論文の概要: Diff-FMT: Diffusion Models for Fluorescence Molecular Tomography
- arxiv url: http://arxiv.org/abs/2410.06757v1
- Date: Wed, 9 Oct 2024 10:41:31 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-01 03:50:25.896865
- Title: Diff-FMT: Diffusion Models for Fluorescence Molecular Tomography
- Title(参考訳): Diff-FMT:蛍光分子線トモグラフィのための拡散モデル
- Authors: Qianqian Xue, Peng Zhang, Xingyu Liu, Wenjian Wang, Guanglei Zhang,
- Abstract要約: 拡散確率モデル(DDPM)に基づくFMT再構成手法を提案する。
ステップバイステップの確率サンプリング機構により、画像のきめ細かい再構築を実現し、画像詳細の喪失などの問題を回避する。
Diff-FMTは大規模データセットに頼らずに高解像度の再構成画像が得られることを示す。
- 参考スコア(独自算出の注目度): 16.950699640321936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Fluorescence molecular tomography (FMT) is a real-time, noninvasive optical imaging technology that plays a significant role in biomedical research. Nevertheless, the ill-posedness of the inverse problem poses huge challenges in FMT reconstructions. Previous various deep learning algorithms have been extensively explored to address the critical issues, but they remain faces the challenge of high data dependency with poor image quality. In this paper, we, for the first time, propose a FMT reconstruction method based on a denoising diffusion probabilistic model (DDPM), termed Diff-FMT, which is capable of obtaining high-quality reconstructed images from noisy images. Specifically, we utilize the noise addition mechanism of DDPM to generate diverse training samples. Through the step-by-step probability sampling mechanism in the inverse process, we achieve fine-grained reconstruction of the image, avoiding issues such as loss of image detail that can occur with end-to-end deep-learning methods. Additionally, we introduce the fluorescence signals as conditional information in the model training to sample a reconstructed image that is highly consistent with the input fluorescence signals from the noisy images. Numerous experimental results show that Diff-FMT can achieve high-resolution reconstruction images without relying on large-scale datasets compared with other cutting-edge algorithms.
- Abstract(参考訳): 蛍光分子トモグラフィー(FMT)は、生体医学研究において重要な役割を果たすリアルタイム非侵襲光学イメージング技術である。
それでも、逆問題の不備は、FMT再建において大きな課題をもたらす。
これまでの様々なディープラーニングアルゴリズムは、重要な問題に対処するために広範囲に研究されてきたが、画像品質の低下を伴う高いデータ依存の課題に直面している。
本稿では,ノイズ画像から高品質な再構成画像を得ることのできるDiff-FMTと呼ばれる拡散確率モデル(DDPM)に基づくFMT再構成手法を初めて提案する。
具体的には、DDPMのノイズ付加機構を用いて、多様なトレーニングサンプルを生成する。
逆過程におけるステップバイステップの確率サンプリング機構により、画像のきめ細かい再構築を実現し、エンドツーエンドのディープラーニング手法で起こりうる画像詳細の損失などの問題を回避する。
さらに, モデルトレーニングにおける条件情報として蛍光信号を導入し, ノイズ画像からの入力蛍光信号と高度に整合した再構成画像のサンプリングを行う。
多くの実験結果から、Diff-FMTは、他の最先端アルゴリズムと比較して、大規模なデータセットに頼ることなく、高解像度の再構成画像を実現できることが示された。
関連論文リスト
- Learned Discrepancy Reconstruction and Benchmark Dataset for Magnetic Particle Imaging [3.7898596546142818]
磁気粒子イメージング (MPI) は、超常磁性酸化鉄ナノ粒子の磁気応答に基づく新しい画像モダリティである。
MPI画像再構成作業における重要な課題は、その基礎となるノイズモデルから生じる。
本稿では,逆問題に対する新しい学習ベース再構成手法であるLearninged Discrepancy Approachを紹介する。
論文 参考訳(メタデータ) (2025-01-09T21:21:06Z) - Improved Patch Denoising Diffusion Probabilistic Models for Magnetic Resonance Fingerprinting [7.379135816468852]
MRF(Magnetic Resonance Fingerprinting)は、MRIの定量的手法である。
正確な再建を達成することは、特に高度に加速され、アンサンプされた買収において、依然として困難である。
MRF画像再構成のための条件拡散確率モデルを提案する。
論文 参考訳(メタデータ) (2024-10-29T21:38:54Z) - A Flow-based Truncated Denoising Diffusion Model for Super-resolution Magnetic Resonance Spectroscopic Imaging [34.32290273033808]
本研究は,超高分解能MRSIのためのフローベースTrncated Denoising Diffusion Modelを導入する。
拡散鎖を切断することで拡散過程を短縮し, 正規化フローベースネットワークを用いて切断工程を推定する。
FTDDMは既存の生成モデルよりも優れており、サンプリングプロセスを9倍以上高速化している。
論文 参考訳(メタデータ) (2024-10-25T03:42:35Z) - Denoising diffusion models for high-resolution microscopy image restoration [34.82692226532414]
我々は,低分解能情報にモデルを条件付け,高分解能画像を予測するために,DDPM(denoising diffusion probabilistic model)を訓練する。
このモデルでは,4つの高度に多種多様なデータセットに対して,これまでで最も優れた性能を示す手法に近い性能を達成できることが示される。
論文 参考訳(メタデータ) (2024-09-18T15:53:45Z) - Iterative CT Reconstruction via Latent Variable Optimization of Shallow Diffusion Models [1.4019041243188557]
拡散確率モデルと反復CT再構成を組み合わせた新しいCT再構成法を提案する。
提案手法の有効性を1/10プロジェクションデータのスパースプロジェクションCT再構成を用いて実証した。
論文 参考訳(メタデータ) (2024-08-06T12:55:17Z) - TC-DiffRecon: Texture coordination MRI reconstruction method based on
diffusion model and modified MF-UNet method [2.626378252978696]
本稿では,T-DiffReconという名前の拡散モデルに基づくMRI再構成法を提案する。
また、モデルにより生成されたMRI画像の品質を高めるために、MF-UNetモジュールを組み込むことを提案する。
論文 参考訳(メタデータ) (2024-02-17T13:09:00Z) - DiAD: A Diffusion-based Framework for Multi-class Anomaly Detection [55.48770333927732]
本稿では,拡散型異常検出(Difusion-based Anomaly Detection, DAD)フレームワークを提案する。
画素空間オートエンコーダ、安定拡散の復調ネットワークに接続する潜在空間セマンティックガイド(SG)ネットワーク、特徴空間事前学習機能抽出器から構成される。
MVTec-ADとVisAデータセットの実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2023-12-11T18:38:28Z) - Diffusion Reconstruction of Ultrasound Images with Informative
Uncertainty [5.375425938215277]
超音波画像の品質を高めるには、コントラスト、解像度、スペックル保存といった同時的な要因のバランスを取る必要がある。
拡散モデルの進歩を生かしたハイブリッドアプローチを提案する。
シミュレーション,in-vitro,in-vivoデータの総合的な実験を行い,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2023-10-31T16:51:40Z) - On Sensitivity and Robustness of Normalization Schemes to Input
Distribution Shifts in Automatic MR Image Diagnosis [58.634791552376235]
深層学習(DL)モデルは、再構成画像を入力として、複数の疾患の診断において最先端のパフォーマンスを達成した。
DLモデルは、トレーニングとテストフェーズ間の入力データ分布の変化につながるため、さまざまなアーティファクトに敏感である。
本稿では,グループ正規化やレイヤ正規化といった他の正規化手法を用いて,画像のさまざまなアーチファクトに対して,モデル性能にロバスト性を注入することを提案する。
論文 参考訳(メタデータ) (2023-06-23T03:09:03Z) - Low-Light Image Enhancement with Wavelet-based Diffusion Models [50.632343822790006]
拡散モデルは画像復元作業において有望な結果を得たが、時間を要する、過剰な計算資源消費、不安定な復元に悩まされている。
本稿では,DiffLLと呼ばれる高能率かつ高能率な拡散型低光画像強調手法を提案する。
論文 参考訳(メタデータ) (2023-06-01T03:08:28Z) - DDFM: Denoising Diffusion Model for Multi-Modality Image Fusion [144.9653045465908]
拡散確率モデル(DDPM)に基づく新しい融合アルゴリズムを提案する。
近赤外可視画像融合と医用画像融合で有望な融合が得られた。
論文 参考訳(メタデータ) (2023-03-13T04:06:42Z) - Complex-valued Retrievals From Noisy Images Using Diffusion Models [26.467188665404727]
顕微鏡では、センサーは実測値の強度のみを測定し、さらに、センサーの読み出しはポアソニアン分布光子ノイズの影響を受けます。
従来の復元アルゴリズムは、元の画像と復元された画像の間の平均2乗誤差(MSE)を最小限にすることを目的としている。
これはしばしば知覚品質の悪いぼやけた結果につながる。
論文 参考訳(メタデータ) (2022-12-06T18:57:59Z) - AT-DDPM: Restoring Faces degraded by Atmospheric Turbulence using
Denoising Diffusion Probabilistic Models [64.24948495708337]
大気の乱流は、ぼやけや幾何学的歪みを導入して画質を著しく劣化させる。
CNNベースやGANインバージョンベースなど,深層学習に基づく単一画像大気乱流低減手法が提案されている。
Denoising Diffusion Probabilistic Models (DDPMs) は、その安定したトレーニングプロセスと高品質な画像を生成する能力により、最近注目を集めている。
論文 参考訳(メタデータ) (2022-08-24T03:13:04Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
本稿では,畳み込みニューラルネットワークや生成的敵ネットワークに基づく手法を含む,高速MRIのためのディープラーニングに基づくデータ駆動手法を紹介する。
MRI加速のための物理とデータ駆動モデルの結合に関する研究について詳述する。
最後に, 臨床応用について紹介し, マルチセンター・マルチスキャナー研究における高速MRI技術におけるデータ調和の重要性と説明可能なモデルについて述べる。
論文 参考訳(メタデータ) (2022-04-01T22:48:08Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - Unsupervised Denoising of Retinal OCT with Diffusion Probabilistic Model [0.2578242050187029]
本稿では,信号の代わりにノイズから学習するための拡散確率モデルを提案する。
本手法は,簡単な作業パイプラインと少量のトレーニングデータを用いて,画像品質を著しく向上させることができる。
論文 参考訳(メタデータ) (2022-01-27T19:02:38Z) - Reference-based Magnetic Resonance Image Reconstruction Using Texture
Transforme [86.6394254676369]
高速MRI再構成のための新しいテクスチャトランスフォーマーモジュール(TTM)を提案する。
変換器のクエリやキーとしてアンダーサンプルのデータと参照データを定式化する。
提案したTTMは、MRIの再構成手法に積み重ねることで、その性能をさらに向上させることができる。
論文 参考訳(メタデータ) (2021-11-18T03:06:25Z) - Data-driven generation of plausible tissue geometries for realistic
photoacoustic image synthesis [53.65837038435433]
光音響トモグラフィ(pat)は形態的および機能的組織特性を回復する可能性がある。
我々は,PATデータシミュレーションの新たなアプローチを提案し,これを「シミュレーションの学習」と呼ぶ。
我々は、意味的注釈付き医療画像データに基づいて訓練されたGAN(Generative Adversarial Networks)の概念を活用して、可塑性組織ジオメトリを生成する。
論文 参考訳(メタデータ) (2021-03-29T11:30:18Z) - Multi-institutional Collaborations for Improving Deep Learning-based
Magnetic Resonance Image Reconstruction Using Federated Learning [62.17532253489087]
深層学習法はmr画像再構成において優れた性能をもたらすことが示されている。
これらの方法は、高い取得コストと医療データプライバシー規制のために収集および共有が困難である大量のデータを必要とします。
我々は,異なる施設で利用可能なmrデータを活用し,患者のプライバシーを保ちながら,連合学習(fl)ベースのソリューションを提案する。
論文 参考訳(メタデータ) (2021-03-03T03:04:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。