Adversarial Vulnerability as a Consequence of On-Manifold Inseparibility
- URL: http://arxiv.org/abs/2410.06921v1
- Date: Wed, 9 Oct 2024 14:18:52 GMT
- Title: Adversarial Vulnerability as a Consequence of On-Manifold Inseparibility
- Authors: Rajdeep Haldar, Yue Xing, Qifan Song, Guang Lin,
- Abstract summary: We consider classification tasks and characterize the data distribution as a low-dimensional manifold.
We argue that clean training experiences poor convergence in the off-manifold direction caused by the ill-conditioning.
We perform experiments and exhibit tremendous robustness improvements in clean training through long training and the employment of second-order methods.
- Score: 16.998477658358773
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent works have shown theoretically and empirically that redundant data dimensions are a source of adversarial vulnerability. However, the inverse doesn't seem to hold in practice; employing dimension-reduction techniques doesn't exhibit robustness as expected. In this work, we consider classification tasks and characterize the data distribution as a low-dimensional manifold, with high/low variance features defining the on/off manifold direction. We argue that clean training experiences poor convergence in the off-manifold direction caused by the ill-conditioning in widely used first-order optimizers like gradient descent. The poor convergence then acts as a source of adversarial vulnerability when the dataset is inseparable in the on-manifold direction. We provide theoretical results for logistic regression and a 2-layer linear network on the considered data distribution. Furthermore, we advocate using second-order methods that are immune to ill-conditioning and lead to better robustness. We perform experiments and exhibit tremendous robustness improvements in clean training through long training and the employment of second-order methods, corroborating our framework. Additionally, we find the inclusion of batch-norm layers hinders such robustness gains. We attribute this to differing implicit biases between traditional and batch-normalized neural networks.
Related papers
- Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data [38.44734564565478]
We provide a theoretical understanding of adversarial examples and adversarial training algorithms from the perspective of feature learning theory.
We show that the adversarial training method can provably strengthen the robust feature learning and suppress the non-robust feature learning.
arXiv Detail & Related papers (2024-10-11T03:59:49Z) - TWINS: A Fine-Tuning Framework for Improved Transferability of
Adversarial Robustness and Generalization [89.54947228958494]
This paper focuses on the fine-tuning of an adversarially pre-trained model in various classification tasks.
We propose a novel statistics-based approach, Two-WIng NormliSation (TWINS) fine-tuning framework.
TWINS is shown to be effective on a wide range of image classification datasets in terms of both generalization and robustness.
arXiv Detail & Related papers (2023-03-20T14:12:55Z) - The Double-Edged Sword of Implicit Bias: Generalization vs. Robustness
in ReLU Networks [64.12052498909105]
We study the implications of the implicit bias of gradient flow on generalization and adversarial robustness in ReLU networks.
In two-layer ReLU networks gradient flow is biased towards solutions that generalize well, but are highly vulnerable to adversarial examples.
arXiv Detail & Related papers (2023-03-02T18:14:35Z) - Explicit Tradeoffs between Adversarial and Natural Distributional
Robustness [48.44639585732391]
In practice, models need to enjoy both types of robustness to ensure reliability.
In this work, we show that in fact, explicit tradeoffs exist between adversarial and natural distributional robustness.
arXiv Detail & Related papers (2022-09-15T19:58:01Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - On the (Un-)Avoidability of Adversarial Examples [4.822598110892847]
adversarial examples in deep learning models have caused substantial concern over their reliability.
We provide a framework for determining whether a model's label change under small perturbation is justified.
We prove that our adaptive data-augmentation maintains consistency of 1-nearest neighbor classification under deterministic labels.
arXiv Detail & Related papers (2021-06-24T21:35:25Z) - Hard-label Manifolds: Unexpected Advantages of Query Efficiency for
Finding On-manifold Adversarial Examples [67.23103682776049]
Recent zeroth order hard-label attacks on image classification models have shown comparable performance to their first-order, gradient-level alternatives.
It was recently shown in the gradient-level setting that regular adversarial examples leave the data manifold, while their on-manifold counterparts are in fact generalization errors.
We propose an information-theoretic argument based on a noisy manifold distance oracle, which leaks manifold information through the adversary's gradient estimate.
arXiv Detail & Related papers (2021-03-04T20:53:06Z) - Reachable Sets of Classifiers and Regression Models: (Non-)Robustness
Analysis and Robust Training [1.0878040851638]
We analyze and enhance robustness properties of both classifiers and regression models.
Specifically, we verify (non-)robustness, propose a robust training procedure, and show that our approach outperforms adversarial attacks.
Second, we provide techniques to distinguish between reliable and non-reliable predictions for unlabeled inputs, to quantify the influence of each feature on a prediction, and compute a feature ranking.
arXiv Detail & Related papers (2020-07-28T10:58:06Z) - Unlabelled Data Improves Bayesian Uncertainty Calibration under
Covariate Shift [100.52588638477862]
We develop an approximate Bayesian inference scheme based on posterior regularisation.
We demonstrate the utility of our method in the context of transferring prognostic models of prostate cancer across globally diverse populations.
arXiv Detail & Related papers (2020-06-26T13:50:19Z) - Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks
Trained with the Logistic Loss [0.0]
Neural networks trained to minimize the logistic (a.k.a. cross-entropy) loss with gradient-based methods are observed to perform well in many supervised classification tasks.
We analyze the training and generalization behavior of infinitely wide two-layer neural networks with homogeneous activations.
arXiv Detail & Related papers (2020-02-11T15:42:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.