An Overview of zbMATH Open Digital Library
- URL: http://arxiv.org/abs/2410.06948v1
- Date: Wed, 09 Oct 2024 14:45:43 GMT
- Title: An Overview of zbMATH Open Digital Library
- Authors: Madhurima Deb, Isabel Beckenbach, Matteo Petrera, Dariush Ehsani, Marcel Fuhrmann, Yun Hao, Olaf Teschke, Moritz Schubotz,
- Abstract summary: zbMATH Open is a comprehensive repository of mathematical literature.
It serves as a unified quality-assured infrastructure for finding, evaluating, and connecting mathematical information.
- Score: 3.1017265002574175
- License:
- Abstract: Mathematical research thrives on the effective dissemination and discovery of knowledge. zbMATH Open has emerged as a pivotal platform in this landscape, offering a comprehensive repository of mathematical literature. Beyond indexing and abstracting, it serves as a unified quality-assured infrastructure for finding, evaluating, and connecting mathematical information that advances mathematical research as well as interdisciplinary exploration. zbMATH Open enables scientific quality control by post-publication reviews and promotes connections between researchers, institutions, and research outputs. This paper represents the functionalities of the most significant features of this open-access service, highlighting its role in shaping the future of mathematical information retrieval.
Related papers
- NLP-Powered Repository and Search Engine for Academic Papers: A Case Study on Cyber Risk Literature with CyLit [9.621564860645513]
We propose a novel framework that leverages Natural Language Processing (NLP) techniques.
This framework automates the retrieval, summarization, and clustering of academic literature within a specific research domain.
We introduce CyLit, an NLP-powered repository specifically designed for the cyber risk literature.
arXiv Detail & Related papers (2024-09-10T05:41:40Z) - Retrieval-Enhanced Machine Learning: Synthesis and Opportunities [60.34182805429511]
Retrieval-enhancement can be extended to a broader spectrum of machine learning (ML)
This work introduces a formal framework of this paradigm, Retrieval-Enhanced Machine Learning (REML), by synthesizing the literature in various domains in ML with consistent notations which is missing from the current literature.
The goal of this work is to equip researchers across various disciplines with a comprehensive, formally structured framework of retrieval-enhanced models, thereby fostering interdisciplinary future research.
arXiv Detail & Related papers (2024-07-17T20:01:21Z) - Ontology Embedding: A Survey of Methods, Applications and Resources [54.3453925775069]
Ontologies are widely used for representing domain knowledge and meta data.
One straightforward solution is to integrate statistical analysis and machine learning.
Numerous papers have been published on embedding, but a lack of systematic reviews hinders researchers from gaining a comprehensive understanding of this field.
arXiv Detail & Related papers (2024-06-16T14:49:19Z) - MASSW: A New Dataset and Benchmark Tasks for AI-Assisted Scientific Workflows [58.56005277371235]
We introduce MASSW, a comprehensive text dataset on Multi-Aspect Summarization of ScientificAspects.
MASSW includes more than 152,000 peer-reviewed publications from 17 leading computer science conferences spanning the past 50 years.
We demonstrate the utility of MASSW through multiple novel machine-learning tasks that can be benchmarked using this new dataset.
arXiv Detail & Related papers (2024-06-10T15:19:09Z) - AceMap: Knowledge Discovery through Academic Graph [90.12694363549483]
AceMap is an academic system designed for knowledge discovery through academic graph.
We present advanced database construction techniques to build the comprehensive AceMap database.
AceMap provides advanced analysis capabilities, including tracing the evolution of academic ideas.
arXiv Detail & Related papers (2024-03-05T01:17:56Z) - An approach based on Open Research Knowledge Graph for Knowledge
Acquisition from scientific papers [4.8951183832371]
Open Research Knowledge Graph (ORKG) is a computer-assisted tool to organize key-insights extracted from research papers.
It is currently used to document "food information engineering", "Tabular data to Knowledge Graph Matching" and "Question Answering" research problems and "Neuro-symbolic AI" domain.
arXiv Detail & Related papers (2023-08-23T20:05:42Z) - The Semantic Reader Project: Augmenting Scholarly Documents through
AI-Powered Interactive Reading Interfaces [54.2590226904332]
We describe the Semantic Reader Project, a effort across multiple institutions to explore automatic creation of dynamic reading interfaces for research papers.
Ten prototype interfaces have been developed and more than 300 participants and real-world users have shown improved reading experiences.
We structure this paper around challenges scholars and the public face when reading research papers.
arXiv Detail & Related papers (2023-03-25T02:47:09Z) - Research Scholar Interest Mining Method based on Load Centrality [15.265191824669555]
This paper proposes a research scholar interest mining algorithm based on load centrality.
The regional structure of each topic can be used to closely calculate the weight of the centrality research model of the node.
The scientific research cooperation based on the load rate center proposed in this paper can effectively extract the interests of scientific research scholars.
arXiv Detail & Related papers (2022-03-21T04:16:46Z) - Web of Scholars: A Scholar Knowledge Graph [38.49685673193518]
Web of Scholars integrates state-of-the-art mining techniques to search, mine, and visualize complex networks behind scholars in the field of Computer Science.
Web of Scholars takes advantage of knowledge graph, which means that it will be able to access more knowledge if more search exist.
arXiv Detail & Related papers (2022-02-23T05:10:19Z) - Generating Knowledge Graphs by Employing Natural Language Processing and
Machine Learning Techniques within the Scholarly Domain [1.9004296236396943]
We present a new architecture that takes advantage of Natural Language Processing and Machine Learning methods for extracting entities and relationships from research publications.
Within this research work, we i) tackle the challenge of knowledge extraction by employing several state-of-the-art Natural Language Processing and Text Mining tools.
We generated a scientific knowledge graph including 109,105 triples, extracted from 26,827 abstracts of papers within the Semantic Web domain.
arXiv Detail & Related papers (2020-10-28T08:31:40Z) - Extracting a Knowledge Base of Mechanisms from COVID-19 Papers [50.17242035034729]
We pursue the construction of a knowledge base (KB) of mechanisms.
We develop a broad, unified schema that strikes a balance between relevance and breadth.
Experiments demonstrate the utility of our KB in supporting interdisciplinary scientific search over COVID-19 literature.
arXiv Detail & Related papers (2020-10-08T07:54:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.