ELMO: Enhanced Real-time LiDAR Motion Capture through Upsampling
- URL: http://arxiv.org/abs/2410.06963v2
- Date: Fri, 11 Oct 2024 14:12:48 GMT
- Title: ELMO: Enhanced Real-time LiDAR Motion Capture through Upsampling
- Authors: Deok-Kyeong Jang, Dongseok Yang, Deok-Yun Jang, Byeoli Choi, Donghoon Shin, Sung-hee Lee,
- Abstract summary: This paper introduces ELMO, a real-time upsampling motion capture framework designed for a single LiDAR sensor.
Modeled as a conditional autoregressive transformer-based upsampling motion generator, ELMO achieves 60 fps motion capture from a 20 fps LiDAR point cloud sequence.
- Score: 12.832526520548855
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This paper introduces ELMO, a real-time upsampling motion capture framework designed for a single LiDAR sensor. Modeled as a conditional autoregressive transformer-based upsampling motion generator, ELMO achieves 60 fps motion capture from a 20 fps LiDAR point cloud sequence. The key feature of ELMO is the coupling of the self-attention mechanism with thoughtfully designed embedding modules for motion and point clouds, significantly elevating the motion quality. To facilitate accurate motion capture, we develop a one-time skeleton calibration model capable of predicting user skeleton offsets from a single-frame point cloud. Additionally, we introduce a novel data augmentation technique utilizing a LiDAR simulator, which enhances global root tracking to improve environmental understanding. To demonstrate the effectiveness of our method, we compare ELMO with state-of-the-art methods in both image-based and point cloud-based motion capture. We further conduct an ablation study to validate our design principles. ELMO's fast inference time makes it well-suited for real-time applications, exemplified in our demo video featuring live streaming and interactive gaming scenarios. Furthermore, we contribute a high-quality LiDAR-mocap synchronized dataset comprising 20 different subjects performing a range of motions, which can serve as a valuable resource for future research. The dataset and evaluation code are available at {\blue \url{https://movin3d.github.io/ELMO_SIGASIA2024/}}
Related papers
- LiDAR-GS:Real-time LiDAR Re-Simulation using Gaussian Splatting [50.808933338389686]
LiDAR simulation plays a crucial role in closed-loop simulation for autonomous driving.
We present LiDAR-GS, the first LiDAR Gaussian Splatting method, for real-time high-fidelity re-simulation of LiDAR sensor scans in public urban road scenes.
Our approach succeeds in simultaneously re-simulating depth, intensity, and ray-drop channels, achieving state-of-the-art results in both rendering frame rate and quality on publically available large scene datasets.
arXiv Detail & Related papers (2024-10-07T15:07:56Z) - Shape Conditioned Human Motion Generation with Diffusion Model [0.0]
We propose a Shape-conditioned Motion Diffusion model (SMD), which enables the generation of motion sequences directly in mesh format.
We also propose a Spectral-Temporal Autoencoder (STAE) to leverage cross-temporal dependencies within the spectral domain.
arXiv Detail & Related papers (2024-05-10T19:06:41Z) - Motion Flow Matching for Human Motion Synthesis and Editing [75.13665467944314]
We propose emphMotion Flow Matching, a novel generative model for human motion generation featuring efficient sampling and effectiveness in motion editing applications.
Our method reduces the sampling complexity from thousand steps in previous diffusion models to just ten steps, while achieving comparable performance in text-to-motion and action-to-motion generation benchmarks.
arXiv Detail & Related papers (2023-12-14T12:57:35Z) - MOVIN: Real-time Motion Capture using a Single LiDAR [7.3228874258537875]
We present MOVIN, the data-driven generative method for real-time motion capture with global tracking.
Our framework accurately predicts the performer's 3D global information and local joint details.
We implement a real-time application to showcase our method in real-world scenarios.
arXiv Detail & Related papers (2023-09-17T16:04:15Z) - MotionTrack: Learning Motion Predictor for Multiple Object Tracking [68.68339102749358]
We introduce a novel motion-based tracker, MotionTrack, centered around a learnable motion predictor.
Our experimental results demonstrate that MotionTrack yields state-of-the-art performance on datasets such as Dancetrack and SportsMOT.
arXiv Detail & Related papers (2023-06-05T04:24:11Z) - Interactive Character Control with Auto-Regressive Motion Diffusion Models [18.727066177880708]
We propose A-MDM (Auto-regressive Motion Diffusion Model) for real-time motion synthesis.
Our conditional diffusion model takes an initial pose as input, and auto-regressively generates successive motion frames conditioned on previous frame.
We introduce a suite of techniques for incorporating interactive controls into A-MDM, such as task-oriented sampling, in-painting, and hierarchical reinforcement learning.
arXiv Detail & Related papers (2023-06-01T07:48:34Z) - MotionBEV: Attention-Aware Online LiDAR Moving Object Segmentation with
Bird's Eye View based Appearance and Motion Features [5.186531650935954]
We present MotionBEV, a fast and accurate framework for LiDAR moving object segmentation.
Our approach converts 3D LiDAR scans into a 2D polar BEV representation to improve computational efficiency.
We employ a dual-branch network bridged by the Appearance-Motion Co-attention Module (AMCM) to adaptively fuse the LiDAR-temporal information from appearance and motion features.
arXiv Detail & Related papers (2023-05-12T09:28:09Z) - WOMD-LiDAR: Raw Sensor Dataset Benchmark for Motion Forecasting [38.95768804529958]
We augment the Open Motion dataset with large-scale, high-quality, diverse LiDAR data for the motion forecasting task.
The new augmented dataset WOMD-LiDAR consists of over 100,000 scenes that each spans 20 seconds, consisting of well-synchronized and high quality LiDAR point clouds captured across a range of urban and suburban geographies.
Experiments show that the LiDAR data brings improvement in the motion forecasting task.
arXiv Detail & Related papers (2023-04-07T20:23:15Z) - STMT: A Spatial-Temporal Mesh Transformer for MoCap-Based Action Recognition [50.064502884594376]
We study the problem of human action recognition using motion capture (MoCap) sequences.
We propose a novel Spatial-Temporal Mesh Transformer (STMT) to directly model the mesh sequences.
The proposed method achieves state-of-the-art performance compared to skeleton-based and point-cloud-based models.
arXiv Detail & Related papers (2023-03-31T16:19:27Z) - Flow-Guided Sparse Transformer for Video Deblurring [124.11022871999423]
FlowGuided Sparse Transformer (F GST) is a framework for video deblurring.
FGSW-MSA enjoys the guidance of the estimated optical flow to globally sample spatially sparse elements corresponding to the same scene patch in neighboring frames.
Our proposed F GST outperforms state-of-the-art patches on both DVD and GOPRO datasets and even yields more visually pleasing results in real video deblurring.
arXiv Detail & Related papers (2022-01-06T02:05:32Z) - Unsupervised Motion Representation Learning with Capsule Autoencoders [54.81628825371412]
Motion Capsule Autoencoder (MCAE) models motion in a two-level hierarchy.
MCAE is evaluated on a novel Trajectory20 motion dataset and various real-world skeleton-based human action datasets.
arXiv Detail & Related papers (2021-10-01T16:52:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.