Quantum Frequency Combs with Path Identity for Quantum Remote Sensing
- URL: http://arxiv.org/abs/2410.07044v1
- Date: Wed, 9 Oct 2024 16:34:41 GMT
- Title: Quantum Frequency Combs with Path Identity for Quantum Remote Sensing
- Authors: D. A. R. Dalvit, T. J. Volkoff, Y. -S. Choi, A. K. Azad, H. -T. Chen, P. W. Milonni,
- Abstract summary: Photons are the clear choice as quantum probes for remote sensing because they can travel to and interact with a distant target.
Existing schemes are mainly based on the quantum illumination framework, which requires a quantum memory to store a single photon of an initially entangled pair.
We propose a novel quantum sensing framework that addresses these challenges using quantum frequency combs with path identity for remote sensing of signatures.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum sensing promises to revolutionize sensing applications by employing quantum states of light or matter as sensing probes. Photons are the clear choice as quantum probes for remote sensing because they can travel to and interact with a distant target. Existing schemes are mainly based on the quantum illumination framework, which requires a quantum memory to store a single photon of an initially entangled pair until its twin reflects off a target and returns for final correlation measurements. Existing demonstrations are limited to tabletop experiments, and expanding the sensing range faces various roadblocks, including long-time quantum storage and photon loss and noise when transmitting quantum signals over long distances. We propose a novel quantum sensing framework that addresses these challenges using quantum frequency combs with path identity for remote sensing of signatures (``qCOMBPASS"). The combination of one key quantum phenomenon and two quantum resources, namely quantum induced coherence by path identity, quantum frequency combs, and two-mode squeezed light, allows for quantum remote sensing without requiring a quantum memory. The proposed scheme is akin to a quantum radar based on entangled frequency comb pairs that uses path identity to detect/range/sense a remote target of interest by measuring pulses of one comb in the pair that never flew to target, but that contains target information ``teleported" by quantum-induced coherence from the other comb in the pair that did fly to target but is not detected.
Related papers
- Quantum Teleportation with Telecom Photons from Remote Quantum Emitters [0.0]
The quest for a global quantum internet is based on the realization of a scalable network which requires quantum hardware with exceptional performance.
Here we realize full-photonic quantum teleportation employing one of the most promising platforms, i.e. semiconductor quantum dots.
The frequency mismatch between the triggered sources is erased using two polarization-preserving quantum frequency converters.
arXiv Detail & Related papers (2024-11-19T22:42:36Z) - Enhanced quantum state transfer: Circumventing quantum chaotic behavior [35.74056021340496]
We show how to transfer few-particle quantum states in a two-dimensional quantum network.
Our approach paves the way to short-distance quantum communication for connecting distributed quantum processors or registers.
arXiv Detail & Related papers (2024-02-01T19:00:03Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum Optical Memory for Entanglement Distribution [52.77024349608834]
Entanglement of quantum states over long distances can empower quantum computing, quantum communications, and quantum sensing.
Over the past two decades, quantum optical memories with high fidelity, high efficiencies, long storage times, and promising multiplexing capabilities have been developed.
arXiv Detail & Related papers (2023-04-19T03:18:51Z) - Integrated Quantum Optical Phase Sensor [48.7576911714538]
We present a photonic integrated circuit fabricated in thin-film lithium niobate.
We use the second-order nonlinearity to produce a squeezed state at the same frequency as the pump light and realize circuit control and sensing with electro-optics.
We anticipate that on-chip photonic systems like this, which operate with low power and integrate all of the needed functionality on a single die, will open new opportunities for quantum optical sensing.
arXiv Detail & Related papers (2022-12-19T18:46:33Z) - Experimental Multi-state Quantum Discrimination in the Frequency Domain
with Quantum Dot Light [40.96261204117952]
In this work, we present the experimental realization of a protocol employing a time-multiplexing strategy to optimally discriminate among eight non-orthogonal states.
The experiment was built on a custom-designed bulk optics analyser setup and single photons generated by a nearly deterministic solid-state source.
Our work paves the way for more complex applications and delivers a novel approach towards high-dimensional quantum encoding and decoding operations.
arXiv Detail & Related papers (2022-09-17T12:59:09Z) - Detection of arbitrary quantum correlations via synthesized quantum
channels [16.1155239067513]
We demonstrate the extraction of arbitrary types of quantum correlations using a quantum-sensing approach based on sequential weak measurement.
We successfully extract the second- and fourth-order correlations of a nuclear-spin target by another nuclear-spin sensor.
The full characterization of quantum correlations provides a new tool for understanding quantum many-body systems.
arXiv Detail & Related papers (2022-06-13T02:27:17Z) - On-chip spin-photon entanglement based on single-photon scattering [2.4567119332161234]
We demonstrate an on-chip entangling gate between an incoming photon and a stationary quantum-dot spin qubit.
Results represent a major step in realizing a quantum node capable of both photonic entanglement generation and on-chip quantum logic.
arXiv Detail & Related papers (2022-05-25T15:14:28Z) - Dynamical photon-photon interaction mediated by a quantum emitter [1.9677315976601693]
Single photons constitute a main platform in quantum science and technology.
Main challenge in quantum photonics is how to generate advanced entangled resource states and efficient light-matter interfaces.
We utilize the efficient and coherent coupling of a single quantum emitter to a nanophotonic waveguide for realizing quantum nonlinear interaction between single-photon wavepackets.
arXiv Detail & Related papers (2021-12-13T17:33:30Z) - Quantum Phases of Matter on a 256-Atom Programmable Quantum Simulator [41.74498230885008]
We demonstrate a programmable quantum simulator based on deterministically prepared two-dimensional arrays of neutral atoms.
We benchmark the system by creating and characterizing high-fidelity antiferromagnetically ordered states.
We then create and study several new quantum phases that arise from the interplay between interactions and coherent laser excitation.
arXiv Detail & Related papers (2020-12-22T19:00:04Z) - Quantum key distribution with entangled photons generated on-demand by a
quantum dot [0.0]
Entanglement-based protocols offer additional layers of security and scale favorably with quantum repeaters.
We experimentally demonstrate a modified Ekert quantum key distribution protocol with two quantum channel approaches.
Our field study highlights that quantum-dot entangled-photon sources are ready to go beyond laboratory experiments.
arXiv Detail & Related papers (2020-07-24T18:21:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.