論文の概要: I Want to Break Free! Persuasion and Anti-Social Behavior of LLMs in Multi-Agent Settings with Social Hierarchy
- arxiv url: http://arxiv.org/abs/2410.07109v2
- Date: Wed, 16 Oct 2024 08:06:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 22:27:10.037953
- Title: I Want to Break Free! Persuasion and Anti-Social Behavior of LLMs in Multi-Agent Settings with Social Hierarchy
- Title(参考訳): 自由を破りたい! 階層型マルチエージェント環境におけるLCMの説得と反社会的行動
- Authors: Gian Maria Campedelli, Nicolò Penzo, Massimo Stefan, Roberto Dessì, Marco Guerini, Bruno Lepri, Jacopo Staiano,
- Abstract要約: 本研究では,Large Language Model (LLM) に基づくエージェントの相互作用パターンについて,厳密な社会的階層を特徴とする文脈で検討する。
本研究では,警備員と囚人エージェントが関与するシミュレートシナリオにおける説得と反社会的行動の2つの現象について検討した。
- 参考スコア(独自算出の注目度): 13.68625980741047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: As Large Language Model (LLM)-based agents become increasingly autonomous and will more freely interact with each other, studying interactions between them becomes crucial to anticipate emergent phenomena and potential risks. Drawing inspiration from the widely popular Stanford Prison Experiment, we contribute to this line of research by studying interaction patterns of LLM agents in a context characterized by strict social hierarchy. We do so by specifically studying two types of phenomena: persuasion and anti-social behavior in simulated scenarios involving a guard and a prisoner agent who seeks to achieve a specific goal (i.e., obtaining additional yard time or escape from prison). Leveraging 200 experimental scenarios for a total of 2,000 machine-machine conversations across five different popular LLMs, we provide a set of noteworthy findings. We first document how some models consistently fail in carrying out a conversation in our multi-agent setup where power dynamics are at play. Then, for the models that were able to engage in successful interactions, we empirically show how the goal that an agent is set to achieve impacts primarily its persuasiveness, while having a negligible effect with respect to the agent's anti-social behavior. Third, we highlight how agents' personas, and particularly the guard's personality, drive both the likelihood of successful persuasion from the prisoner and the emergence of anti-social behaviors. Fourth, we show that even without explicitly prompting for specific personalities, anti-social behavior emerges by simply assigning agents' roles. These results bear implications for the development of interactive LLM agents as well as the debate on their societal impact.
- Abstract(参考訳): 大規模言語モデル(LLM)に基づくエージェントは、ますます自律的になり、互いに自由に相互作用するようになり、それらの相互作用を研究することは、創発的な現象や潜在的なリスクを予測するために重要である。
スタンフォード刑務所実験(Stanford Prison Experiment)からインスピレーションを得て, 厳密な社会的階層を特徴とする文脈において, LLMエージェントの相互作用パターンを研究することによって, この研究の行方に貢献する。
我々は、特定の目的を達成するために(つまり、追加のヤードタイムを得るか、刑務所から脱出するか)ガードと囚人エージェントを含むシミュレートされたシナリオにおける、説得と反社会的行動の2つの種類の現象を具体的に研究する。
5つのLLMにまたがる合計2000の機械機械間会話に200の実験シナリオを活用することで、注目すべき発見の集合を提供する。
まず、パワーダイナミクスが動作しているマルチエージェント環境での会話において、いくつかのモデルが一貫して失敗する様子を文書化します。
そして, 良好な相互作用を達成できるモデルについて, エージェントの反社会的行動に対する無視的な影響を伴いながら, エージェントが主に説得力に影響を及ぼすように設定した目標がどう影響するかを実証的に示す。
第3に、エージェントのペルソナ、特に警備員のパーソナが、囚人から説得を成功させる可能性と反社会的行動の出現を両立させる方法について強調する。
第4に、特定の個人性を明示的に促すことなく、エージェントの役割を割り当てることによって、反社会的行動が出現することを示す。
これらの結果は、対話型LLMエージェントの開発や、その社会的影響に関する議論に影響を及ぼす。
関連論文リスト
- Multi-Agents are Social Groups: Investigating Social Influence of Multiple Agents in Human-Agent Interactions [7.421573539569854]
我々は,AIエージェントの集団が,ユーザに対して同意を求める社会的プレッシャーを生じさせるかどうかを検討する。
その結果、複数のエージェントと会話することで、参加者が感じた社会的プレッシャーが増すことがわかった。
本研究は, 単一エージェントプラットフォームに対するマルチエージェントシステムの潜在的利点が, 意見変化を引き起こす可能性を示唆している。
論文 参考訳(メタデータ) (2024-11-07T10:00:46Z) - Spontaneous Emergence of Agent Individuality through Social Interactions in LLM-Based Communities [0.0]
本稿では,Large Language Model (LLM) ベースのエージェントを用いて,ゼロからエージェントが出現することを検討する。
このマルチエージェントシミュレーションを解析することにより、社会的規範、協力、性格特性が自然に出現する方法について、貴重な新しい知見を報告する。
論文 参考訳(メタデータ) (2024-11-05T16:49:33Z) - The Dynamics of Social Conventions in LLM populations: Spontaneous Emergence, Collective Biases and Tipping Points [0.0]
シミュレーション対話を用いたLarge Language Model (LLM) エージェントの集団内におけるコンベンションのダイナミクスについて検討する。
グローバルに受け入れられる社会慣行は,LLM間の局所的な相互作用から自然に生じうることを示す。
献身的なLLMのマイノリティグループは、新しい社会慣習を確立することで社会変革を促進することができる。
論文 参考訳(メタデータ) (2024-10-11T16:16:38Z) - PersLLM: A Personified Training Approach for Large Language Models [66.16513246245401]
社会実践, 一貫性, 動的発達という, 心理学に根ざした個性の原則を統合したPersLLMを提案する。
モデルパラメータに直接パーソナリティ特性を組み込み、誘導に対するモデルの抵抗性を高め、一貫性を高め、パーソナリティの動的進化を支援する。
論文 参考訳(メタデータ) (2024-07-17T08:13:22Z) - SocialGFs: Learning Social Gradient Fields for Multi-Agent Reinforcement Learning [58.84311336011451]
マルチエージェント強化学習のための新しい勾配に基づく状態表現を提案する。
オフラインサンプルからソーシャルグラデーションフィールド(SocialGF)を学習するために,デノジングスコアマッチングを採用している。
実際に、SocialGFをMAPPOなど、広く使われているマルチエージェント強化学習アルゴリズムに統合する。
論文 参考訳(メタデータ) (2024-05-03T04:12:19Z) - SocialBench: Sociality Evaluation of Role-Playing Conversational Agents [85.6641890712617]
大規模言語モデル(LLM)は、様々なAI対話エージェントの開発を進めてきた。
SocialBenchは、ロールプレイングの会話エージェントの社会的性を個人レベルとグループレベルで評価するために設計された最初のベンチマークである。
個人レベルで優れたエージェントは,集団レベルでの熟練度を示唆しない。
論文 参考訳(メタデータ) (2024-03-20T15:38:36Z) - Dynamics of Moral Behavior in Heterogeneous Populations of Learning Agents [3.7414804164475983]
本研究では、道徳的に異質な集団が社会的ジレンマ環境で相互作用する学習力学について研究する。
我々は、親社会と反社会的エージェント間のいくつかの非自明な相互作用を観察する。
ある種の道徳的エージェントは、より協調的な行動に向けて利己的なエージェントを操ることができる。
論文 参考訳(メタデータ) (2024-03-07T04:12:24Z) - Should agentic conversational AI change how we think about ethics? Characterising an interactional ethics centred on respect [0.12041807591122715]
本稿では,関係要因と状況要因に着目した倫理の相互作用的アプローチを提案する。
我々の研究は、位置する社会的相互作用のレベルにおいて、ほとんど探索されていないリスクのセットを予想している。
論文 参考訳(メタデータ) (2024-01-17T09:44:03Z) - LLM-Based Agent Society Investigation: Collaboration and Confrontation in Avalon Gameplay [55.12945794835791]
Avalon をテストベッドとして使用し,システムプロンプトを用いてゲームプレイにおける LLM エージェントの誘導を行う。
本稿では,Avalonに適した新しいフレームワークを提案し,効率的なコミュニケーションと対話を容易にするマルチエージェントシステムを提案する。
その結果、適応エージェントの作成におけるフレームワークの有効性を確認し、動的社会的相互作用をナビゲートするLLMベースのエージェントの可能性を提案する。
論文 参考訳(メタデータ) (2023-10-23T14:35:26Z) - Incorporating Rivalry in Reinforcement Learning for a Competitive Game [65.2200847818153]
本研究は,競争行動の社会的影響に基づく新しい強化学習機構を提案する。
提案モデルでは, 人工エージェントの学習を調節するための競合スコアを導出するために, 客観的, 社会的認知的メカニズムを集約する。
論文 参考訳(メタデータ) (2022-08-22T14:06:06Z) - Aligning to Social Norms and Values in Interactive Narratives [89.82264844526333]
我々は、インタラクティブな物語やテキストベースのゲームにおいて、社会的に有益な規範や価値観に沿って行動するエージェントを作成することに注力する。
我々は、特別な訓練を受けた言語モデルに存在する社会的コモンセンス知識を用いて、社会的に有益な値に整合した行動にのみ、その行動空間を文脈的に制限するGAALADエージェントを紹介した。
論文 参考訳(メタデータ) (2022-05-04T09:54:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。