Causal Inference with Double/Debiased Machine Learning for Evaluating the Health Effects of Multiple Mismeasured Pollutants
- URL: http://arxiv.org/abs/2410.07135v1
- Date: Sun, 22 Sep 2024 01:48:56 GMT
- Title: Causal Inference with Double/Debiased Machine Learning for Evaluating the Health Effects of Multiple Mismeasured Pollutants
- Authors: Gang Xu, Xin Zhou, Molin Wang, Boya Zhang, Wenhao Jiang, Francine Laden, Helen H. Suh, Adam A. Szpiro, Donna Spiegelman, Zuoheng Wang,
- Abstract summary: This paper addresses estimation and inference for the causal effect of one constituent in the presence of other PM2.5 constituents.
We demonstrated that the proposed estimator with regression calibration is consistent and derived its variance.
We applied this method to assess causal effects of PM2.5 constituents on cognitive function in the Nurses' Health Study.
- Score: 9.545421693714768
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One way to quantify exposure to air pollution and its constituents in epidemiologic studies is to use an individual's nearest monitor. This strategy results in potential inaccuracy in the actual personal exposure, introducing bias in estimating the health effects of air pollution and its constituents, especially when evaluating the causal effects of correlated multi-pollutant constituents measured with correlated error. This paper addresses estimation and inference for the causal effect of one constituent in the presence of other PM2.5 constituents, accounting for measurement error and correlations. We used a linear regression calibration model, fitted with generalized estimating equations in an external validation study, and extended a double/debiased machine learning (DML) approach to correct for measurement error and estimate the effect of interest in the main study. We demonstrated that the DML estimator with regression calibration is consistent and derived its asymptotic variance. Simulations showed that the proposed estimator reduced bias and attained nominal coverage probability across most simulation settings. We applied this method to assess the causal effects of PM2.5 constituents on cognitive function in the Nurses' Health Study and identified two PM2.5 constituents, Br and Mn, that showed a negative causal effect on cognitive function after measurement error correction.
Related papers
- A Meta-Learning Method for Estimation of Causal Excursion Effects to Assess Time-Varying Moderation [0.0]
This paper revisits the estimation of causal excursion effects from a meta-learner perspective.
We present the properties of the proposed estimators and compare them both theoretically and through extensive simulations.
The results show relative efficiency gains and support the suggestion of a doubly robust alternative to existing methods.
arXiv Detail & Related papers (2023-06-28T15:19:33Z) - Identifiable causal inference with noisy treatment and no side information [6.432072145009342]
This study proposes a model that assumes a continuous treatment variable that is inaccurately measured.
We prove that our model's causal effect estimates are identifiable, even without side information and knowledge of the measurement error variance.
Our work extends the range of applications in which reliable causal inference can be conducted.
arXiv Detail & Related papers (2023-06-18T18:38:10Z) - Causal Effect Estimation from Observational and Interventional Data
Through Matrix Weighted Linear Estimators [11.384045395629123]
We study causal effect estimation from a mixture of observational and interventional data.
We show that the statistical efficiency in terms of expected squared error can be improved by combining estimators.
arXiv Detail & Related papers (2023-06-09T16:16:53Z) - Efficient estimation of weighted cumulative treatment effects by
double/debiased machine learning [3.086361225427304]
We propose a class of one-step cross-fitted double/debiased machine learning estimators for the weighted cumulative causal effect.
We apply the proposed methods to real-world observational data from a UK primary care database to compare the effects of anti-diabetic drugs on cancer outcomes.
arXiv Detail & Related papers (2023-05-03T18:19:18Z) - Monotonicity and Double Descent in Uncertainty Estimation with Gaussian
Processes [52.92110730286403]
It is commonly believed that the marginal likelihood should be reminiscent of cross-validation metrics and that both should deteriorate with larger input dimensions.
We prove that by tuning hyper parameters, the performance, as measured by the marginal likelihood, improves monotonically with the input dimension.
We also prove that cross-validation metrics exhibit qualitatively different behavior that is characteristic of double descent.
arXiv Detail & Related papers (2022-10-14T08:09:33Z) - Covariate-Balancing-Aware Interpretable Deep Learning models for
Treatment Effect Estimation [15.465045049754336]
We propose an upper bound for the bias of average treatment estimation under the strong ignorability assumption.
We implement this upper bound as an objective function being minimized by leveraging a novel additive neural network architecture.
The proposed method is illustrated by re-examining the benchmark datasets for causal inference, and it outperforms the state-of-art.
arXiv Detail & Related papers (2022-03-07T07:42:40Z) - SurvITE: Learning Heterogeneous Treatment Effects from Time-to-Event
Data [83.50281440043241]
We study the problem of inferring heterogeneous treatment effects from time-to-event data.
We propose a novel deep learning method for treatment-specific hazard estimation based on balancing representations.
arXiv Detail & Related papers (2021-10-26T20:13:17Z) - Efficient Causal Inference from Combined Observational and
Interventional Data through Causal Reductions [68.6505592770171]
Unobserved confounding is one of the main challenges when estimating causal effects.
We propose a novel causal reduction method that replaces an arbitrary number of possibly high-dimensional latent confounders.
We propose a learning algorithm to estimate the parameterized reduced model jointly from observational and interventional data.
arXiv Detail & Related papers (2021-03-08T14:29:07Z) - Increasing the efficiency of randomized trial estimates via linear
adjustment for a prognostic score [59.75318183140857]
Estimating causal effects from randomized experiments is central to clinical research.
Most methods for historical borrowing achieve reductions in variance by sacrificing strict type-I error rate control.
arXiv Detail & Related papers (2020-12-17T21:10:10Z) - Enabling Counterfactual Survival Analysis with Balanced Representations [64.17342727357618]
Survival data are frequently encountered across diverse medical applications, i.e., drug development, risk profiling, and clinical trials.
We propose a theoretically grounded unified framework for counterfactual inference applicable to survival outcomes.
arXiv Detail & Related papers (2020-06-14T01:15:00Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.