Astute RAG: Overcoming Imperfect Retrieval Augmentation and Knowledge Conflicts for Large Language Models
- URL: http://arxiv.org/abs/2410.07176v2
- Date: Sat, 31 May 2025 04:07:21 GMT
- Title: Astute RAG: Overcoming Imperfect Retrieval Augmentation and Knowledge Conflicts for Large Language Models
- Authors: Fei Wang, Xingchen Wan, Ruoxi Sun, Jiefeng Chen, Sercan Ö. Arık,
- Abstract summary: We find that imperfect retrieval augmentation is inevitable, common, and harmful.<n>We propose Astute RAG, a novel RAG approach designed to be resilient to imperfect retrieval augmentation.<n>Experiments with Gemini and Claude demonstrate the superior performance of Astute RAG compared to previous robustness-enhanced RAG approaches.
- Score: 20.605487145370752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Retrieval augmented generation (RAG), while effectively integrating external knowledge to address the inherent limitations of large language models (LLMs), can be hindered by imperfect retrieval that contain irrelevant, misleading, or even malicious information. Previous studies have rarely connected the behavior of RAG through joint analysis, particularly regarding error propagation coming from imperfect retrieval and potential conflicts between LLMs' internal knowledge and external sources. Through comprehensive and controlled analyses under realistic conditions, we find that imperfect retrieval augmentation is inevitable, common, and harmful. We identify the knowledge conflicts between LLM-internal and external knowledge from retrieval as a bottleneck to overcome imperfect retrieval in the post-retrieval stage of RAG. To address this, we propose Astute RAG, a novel RAG approach designed to be resilient to imperfect retrieval augmentation. It adaptively elicits essential information from LLMs' internal knowledge, iteratively consolidates internal and external knowledge with source-awareness, and finalizes the answer according to information reliability. Our experiments with Gemini and Claude demonstrate the superior performance of Astute RAG compared to previous robustness-enhanced RAG approaches. Specifically, Astute RAG is the only RAG method that achieves performance comparable to or even surpassing conventional use of LLMs under the worst-case scenario. Further analysis reveals the effectiveness of Astute RAG in resolving knowledge conflicts, thereby improving the trustworthiness of RAG.
Related papers
- Towards Agentic RAG with Deep Reasoning: A Survey of RAG-Reasoning Systems in LLMs [69.10441885629787]
Retrieval-Augmented Generation (RAG) lifts the factuality of Large Language Models (LLMs) by injecting external knowledge.<n>It falls short on problems that demand multi-step inference; conversely, purely reasoning-oriented approaches often hallucinate or mis-ground facts.<n>This survey synthesizes both strands under a unified reasoning-retrieval perspective.
arXiv Detail & Related papers (2025-07-13T03:29:41Z) - From Ambiguity to Accuracy: The Transformative Effect of Coreference Resolution on Retrieval-Augmented Generation systems [6.762635083456022]
We investigate how entity coreference affects both document retrieval and generative performance in RAG-based systems.<n>We demonstrate that coreference resolution enhances retrieval effectiveness and improves question-answering (QA) performance.<n>This study aims to provide a deeper understanding of the challenges posed by coreferential complexity in RAG, providing guidance for improving retrieval and generation in knowledge-intensive AI applications.
arXiv Detail & Related papers (2025-07-10T15:26:59Z) - RADIANT: Retrieval AugmenteD entIty-context AligNmenT -- Introducing RAG-ability and Entity-Context Divergence [5.066415370344766]
Retrieval-Augmented Generation (RAG) is a technique to enhance factual accuracy by integrating external knowledge into the generation process.<n>This paper introduces Radiant, a framework that merges RAG with alignment designed to optimize the interplay between retrieved evidence and generated content.
arXiv Detail & Related papers (2025-06-28T21:40:35Z) - Bridging External and Parametric Knowledge: Mitigating Hallucination of LLMs with Shared-Private Semantic Synergy in Dual-Stream Knowledge [19.767087192966223]
We propose a Dual-Stream Knowledge-Augmented Framework for Shared-Private Semantic Synergy (DSSP-RAG)<n>Central to the framework is a novel approach that refines self-attention into a mixed-attention, distinguishing shared and private semantics for a controlled internal-external knowledge integration.<n>Experiments on benchmark datasets show that DSSP-RAG can effectively resolve conflicts and enhance the complementarity of dual-stream knowledge, leading to superior performance over strong baselines.
arXiv Detail & Related papers (2025-06-06T17:00:23Z) - Accommodate Knowledge Conflicts in Retrieval-augmented LLMs: Towards Reliable Response Generation in the Wild [11.058848731627233]
Large language models (LLMs) have advanced information retrieval systems.
LLMs often face knowledge conflicts between internal memory and retrievaled external information.
We propose Swin-VIB, a novel framework that integrates a pipeline of variational information bottleneck models into adaptive augmentation of retrieved information.
arXiv Detail & Related papers (2025-04-17T14:40:31Z) - Improving Multilingual Retrieval-Augmented Language Models through Dialectic Reasoning Argumentations [65.11348389219887]
We introduce Dialectic-RAG (DRAG), a modular approach that evaluates retrieved information by comparing, contrasting, and resolving conflicting perspectives.
We show the impact of our framework both as an in-context learning strategy and for constructing demonstrations to instruct smaller models.
arXiv Detail & Related papers (2025-04-07T06:55:15Z) - ParamMute: Suppressing Knowledge-Critical FFNs for Faithful Retrieval-Augmented Generation [91.20492150248106]
We investigate the internal mechanisms behind unfaithful generation and identify a subset of mid-to-deep feed-forward networks (FFNs) that are disproportionately activated in such cases.<n>We propose Parametric Knowledge Muting through FFN Suppression (ParamMute), a framework that improves contextual faithfulness by suppressing the activation of unfaithfulness-associated FFNs.<n> Experimental results show that ParamMute significantly enhances faithfulness across both CoFaithfulQA and the established ConFiQA benchmark, achieving substantial reductions in reliance on parametric memory.
arXiv Detail & Related papers (2025-02-21T15:50:41Z) - Towards Trustworthy Retrieval Augmented Generation for Large Language Models: A Survey [92.36487127683053]
Retrieval-Augmented Generation (RAG) is an advanced technique designed to address the challenges of Artificial Intelligence-Generated Content (AIGC)
RAG provides reliable and up-to-date external knowledge, reduces hallucinations, and ensures relevant context across a wide range of tasks.
Despite RAG's success and potential, recent studies have shown that the RAG paradigm also introduces new risks, including privacy concerns, adversarial attacks, and accountability issues.
arXiv Detail & Related papers (2025-02-08T06:50:47Z) - Towards Knowledge Checking in Retrieval-augmented Generation: A Representation Perspective [48.40768048080928]
Retrieval-Augmented Generation (RAG) systems have shown promise in enhancing the performance of Large Language Models (LLMs)
This work aims to provide a systematic study on knowledge checking in RAG systems.
arXiv Detail & Related papers (2024-11-21T20:39:13Z) - Retrieving, Rethinking and Revising: The Chain-of-Verification Can Improve Retrieval Augmented Generation [38.80878966092216]
Recent Retrieval Augmented Generation (RAG) aims to enhance Large Language Models (LLMs)
We propose the chain-of-verification (CoV-RAG) to enhance the external retrieval correctness and internal generation consistency.
arXiv Detail & Related papers (2024-10-08T08:34:54Z) - Trustworthiness in Retrieval-Augmented Generation Systems: A Survey [59.26328612791924]
Retrieval-Augmented Generation (RAG) has quickly grown into a pivotal paradigm in the development of Large Language Models (LLMs)
We propose a unified framework that assesses the trustworthiness of RAG systems across six key dimensions: factuality, robustness, fairness, transparency, accountability, and privacy.
arXiv Detail & Related papers (2024-09-16T09:06:44Z) - Mindful-RAG: A Study of Points of Failure in Retrieval Augmented Generation [11.471919529192048]
Large Language Models (LLMs) are proficient at generating coherent and contextually relevant text.
Retrieval-augmented generation (RAG) systems mitigate this by incorporating external knowledge sources, such as structured knowledge graphs (KGs)
Our study investigates this dilemma by analyzing error patterns in existing KG-based RAG methods and identifying eight critical failure points.
arXiv Detail & Related papers (2024-07-16T23:50:07Z) - A Theory for Token-Level Harmonization in Retrieval-Augmented Generation [76.75124161306795]
Retrieval-augmented generation (RAG) utilizes retrieved texts to enhance large language models (LLMs)
This paper provides a theory to explain and trade off the benefit and detriment in RAG.
Based on our theory, we propose a practical novel method, Tok-RAG, which achieves collaborative generation between the pure LLM and RAG.
arXiv Detail & Related papers (2024-06-03T02:56:14Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
Large Language Models (LLMs) have demonstrated revolutionary abilities in language understanding and generation.
Retrieval-Augmented Generation (RAG) can offer reliable and up-to-date external knowledge.
RA-LLMs have emerged to harness external and authoritative knowledge bases, rather than relying on the model's internal knowledge.
arXiv Detail & Related papers (2024-05-10T02:48:45Z) - REAR: A Relevance-Aware Retrieval-Augmented Framework for Open-Domain Question Answering [115.72130322143275]
REAR is a RElevance-Aware Retrieval-augmented approach for open-domain question answering (QA)
We develop a novel architecture for LLM-based RAG systems, by incorporating a specially designed assessment module.
Experiments on four open-domain QA tasks show that REAR significantly outperforms previous a number of competitive RAG approaches.
arXiv Detail & Related papers (2024-02-27T13:22:51Z) - ActiveRAG: Autonomously Knowledge Assimilation and Accommodation through Retrieval-Augmented Agents [49.30553350788524]
Retrieval-Augmented Generation (RAG) enables Large Language Models (LLMs) to leverage external knowledge.
Existing RAG models often treat LLMs as passive recipients of information.
We introduce ActiveRAG, a multi-agent framework that mimics human learning behavior.
arXiv Detail & Related papers (2024-02-21T06:04:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.