論文の概要: Bayes-Nash Generative Privacy Against Membership Inference Attacks
- arxiv url: http://arxiv.org/abs/2410.07414v3
- Date: Thu, 13 Feb 2025 17:27:11 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:43:50.879916
- Title: Bayes-Nash Generative Privacy Against Membership Inference Attacks
- Title(参考訳): ベイズ・ナッシュによるメンバーシップ推論攻撃に対するプライバシ生成
- Authors: Tao Zhang, Rajagopal Venkatesaraman, Rajat K. De, Bradley A. Malin, Yevgeniy Vorobeychik,
- Abstract要約: メンバーシップ推論攻撃(MIA)は、個人のデータがデータセットにあるかどうかを判断することで、重大なプライバシーリスクを露呈する。
本研究では,MIAのプライバシ保護をディフェンダーとアタッカー間のベイズゲームとしてモデル化するゲーム理論フレームワークを提案する。
そこで我々は,ベイズ・ナッシュ生成プライバシ(BNGP)を得たディフェンダーのデータ共有ポリシーを呼んだ。
- 参考スコア(独自算出の注目度): 24.330984323956173
- License:
- Abstract: Membership inference attacks (MIAs) expose significant privacy risks by determining whether an individual's data is in a dataset. While differential privacy (DP) mitigates such risks, it has several limitations in achieving an optimal balance between utility and privacy, include limited resolution in expressing this tradeoff in only a few privacy parameters, and intractable sensitivity calculations that may be necessary to provide tight privacy guarantees. We propose a game-theoretic framework that models privacy protection from MIA as a Bayesian game between a defender and an attacker. In this game, a dataset is the defender's private information, with privacy loss to the defender (which is gain to the attacker) captured in terms of the attacker's ability to infer membership of individuals in the dataset. To address the strategic complexity of this game, we represent the mixed strategy of the defender as a neural network generator which maps a private dataset to its public representation (for example, noisy summary statistics), while the mixed strategy of the attacker is captured by a discriminator which makes membership inference claims. We refer to the resulting computational approach as a general-sum Generative Adversarial Network, which is trained iteratively by alternating generator and discriminator updates akin to conventional GANs. We call the defender's data sharing policy thereby obtained Bayes-Nash Generative Privacy (BNGP). The BNGP strategy avoids sensitivity calculations, supports compositions of correlated mechanisms, is robust to the attacker's heterogeneous preferences over true and false positives, and yields provable differential privacy guarantees, albeit in an idealized setting.
- Abstract(参考訳): メンバーシップ推論攻撃(MIA)は、個人のデータがデータセットにあるかどうかを判断することで、重大なプライバシーリスクを露呈する。
差分プライバシー(DP)はそのようなリスクを軽減するが、ユーティリティとプライバシの最適バランスを達成するにはいくつかの制限がある。
本研究では,MIAのプライバシ保護をディフェンダーとアタッカー間のベイズゲームとしてモデル化するゲーム理論フレームワークを提案する。
このゲームでは、データセットはディフェンダーのプライベート情報であり、アタッカーがデータセット内の個人のメンバーシップを推測する能力で取得したディフェンダー(アタッカーに利益を与える)にプライバシーを失う。
このゲームの戦略的複雑さに対処するために、我々はディフェンダーの混合戦略をニューラルネットワークジェネレータとして表現し、プライベートデータセットをその公開表現にマッピングする(例えばノイズの多い要約統計)。
本稿では,ジェネレータと識別器の更新を交互に行うことで反復的に学習する汎用生成逆数ネットワークを,従来のGANと類似した計算手法として紹介する。
そこで我々は,ベイズ・ナッシュ生成プライバシ(BNGP)を得たディフェンダーのデータ共有ポリシーを提唱した。
BNGP戦略は感度計算を回避し、相関メカニズムの合成をサポートし、真と偽の正よりも攻撃者の不均一な選好に頑健であり、理想的な環境では証明可能な差分プライバシーを保証する。
関連論文リスト
- Enforcing Demographic Coherence: A Harms Aware Framework for Reasoning about Private Data Release [14.939460540040459]
データプライバシに必要であると主張するプライバシ攻撃にインスパイアされた、人口統計コヒーレンスを導入します。
我々のフレームワークは信頼性評価予測に重点を置いており、ほぼすべてのデータインフォームドプロセスから蒸留することができる。
差分的にプライベートなデータリリースはすべて、人口統計学的にコヒーレントであること、および、差分的にプライベートではない人口統計学的にコヒーレントなアルゴリズムがあることを実証する。
論文 参考訳(メタデータ) (2025-02-04T20:42:30Z) - Enhancing Feature-Specific Data Protection via Bayesian Coordinate Differential Privacy [55.357715095623554]
ローカル微分プライバシー(LDP)は、ユーザーが外部の関係者を信頼することなく、強力なプライバシー保証を提供する。
本稿では,ベイジアン・フレームワークであるベイジアン・コーディネート・ディファレンシャル・プライバシ(BCDP)を提案する。
論文 参考訳(メタデータ) (2024-10-24T03:39:55Z) - Activity Recognition on Avatar-Anonymized Datasets with Masked Differential Privacy [64.32494202656801]
プライバシを保存するコンピュータビジョンは、機械学習と人工知能において重要な問題である。
本稿では,ビデオデータセット中の感性のある被験者を文脈内の合成アバターに置き換える匿名化パイプラインを提案する。
また、匿名化されていないがプライバシーに敏感な背景情報を保護するため、MaskDPを提案する。
論文 参考訳(メタデータ) (2024-10-22T15:22:53Z) - A Game-Theoretic Approach to Privacy-Utility Tradeoff in Sharing Genomic Summary Statistics [24.330984323956173]
本稿では,ゲノムサマリー統計の共有において,最適なプライバシ・ユーティリティ・トレードオフのためのゲーム理論フレームワークを提案する。
実験により,提案手法は,技術状況よりも強力な攻撃と強力な防衛戦略をもたらすことが示された。
論文 参考訳(メタデータ) (2024-06-03T22:09:47Z) - ATTAXONOMY: Unpacking Differential Privacy Guarantees Against Practical Adversaries [11.550822252074733]
我々は攻撃の詳細な分類を提供し、攻撃のさまざまな側面を示し、多くの現実世界の設定が検討されていることを強調している。
イスラエル厚生労働省が最近発表した、差分プライバシーを用いた出生データセットの実際のケーススタディを分析して、分類学を運用しています。
論文 参考訳(メタデータ) (2024-05-02T20:23:23Z) - Secure Aggregation is Not Private Against Membership Inference Attacks [66.59892736942953]
フェデレーション学習におけるSecAggのプライバシーへの影響について検討する。
SecAggは、単一のトレーニングラウンドであっても、メンバシップ推論攻撃に対して弱いプライバシを提供します。
以上の結果から,ノイズ注入などの付加的なプライバシー強化機構の必要性が浮き彫りになった。
論文 参考訳(メタデータ) (2024-03-26T15:07:58Z) - Defending against Reconstruction Attacks with R\'enyi Differential
Privacy [72.1188520352079]
レコンストラクション攻撃により、敵は訓練されたモデルのみにアクセスすることで、トレーニングセットのデータサンプルを再生することができる。
差別化プライバシはこのような攻撃に対する既知の解決策であるが、比較的大きなプライバシ予算で使用されることが多い。
また、同機構により、従来の文献よりも優れた復元攻撃に対するプライバシー保証を導出できることを示す。
論文 参考訳(メタデータ) (2022-02-15T18:09:30Z) - LTU Attacker for Membership Inference [23.266710407178078]
我々は,会員推定攻撃に対する予測モデルを守るという課題に対処する。
ユーティリティとプライバシの両方を、アタッカーと評価器を含む外部装置で評価する。
特定の条件下では、単純な攻撃戦略によって、LTU攻撃者でさえ、プライバシー損失の低い境界を達成できることを証明します。
論文 参考訳(メタデータ) (2022-02-04T18:06:21Z) - Robustness Threats of Differential Privacy [70.818129585404]
我々は、いくつかの設定で差分プライバシーをトレーニングしたネットワークが、非プライベートバージョンに比べてさらに脆弱であることを実験的に実証した。
本研究では,勾配クリッピングや雑音付加などのニューラルネットワークトレーニングの主成分が,モデルの堅牢性に与える影響について検討する。
論文 参考訳(メタデータ) (2020-12-14T18:59:24Z) - Private Reinforcement Learning with PAC and Regret Guarantees [69.4202374491817]
エピソード強化学習(RL)のためのプライバシー保護探索ポリシーを設計する。
まず、共同微分プライバシー(JDP)の概念を用いた有意義なプライバシー定式化を提供する。
そこで我々は,強いPACと後悔境界を同時に達成し,JDP保証を享受する,プライベートな楽観主義に基づく学習アルゴリズムを開発した。
論文 参考訳(メタデータ) (2020-09-18T20:18:35Z) - Systematic Evaluation of Privacy Risks of Machine Learning Models [41.017707772150835]
メンバーシップ推論攻撃に対する事前の取り組みは、プライバシーリスクを著しく過小評価する可能性があることを示す。
まず、既存の非ニューラルネットワークベースの推論攻撃を改善することで、メンバーシップ推論のプライバシリスクをベンチマークする。
次に、プライバシリスクスコアと呼ばれる新しい指標を定式化し、導出することで、詳細なプライバシ分析のための新しいアプローチを導入する。
論文 参考訳(メタデータ) (2020-03-24T00:53:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。