論文の概要: Modeling Alzheimer's Disease: From Memory Loss to Plaque & Tangles Formation
- arxiv url: http://arxiv.org/abs/2410.07503v1
- Date: Thu, 10 Oct 2024 00:35:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 16:46:37.151750
- Title: Modeling Alzheimer's Disease: From Memory Loss to Plaque & Tangles Formation
- Title(参考訳): アルツハイマー病のモデリング : 記憶喪失からプラーク&タングルス形成まで
- Authors: Sai Nag Anurag Nangunoori, Akshara Karthic Mahadevan,
- Abstract要約: ホップフィールドモデルを用いて、記憶障害とアルツハイマー病に特徴的な生化学的プロセスの両方を探索する。
記憶喪失, 混乱, 回復時間の遅れなど, 認知症の徴候症状がみられた。
我々の研究は、神経変性疾患におけるシナプスと代謝障害の二重影響を理解するための計算フレームワークを提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We employ the Hopfield model as a simplified framework to explore both the memory deficits and the biochemical processes characteristic of Alzheimer's disease. By simulating neuronal death and synaptic degradation through increasing the number of stored patterns and introducing noise into the synaptic weights, we demonstrate hallmark symptoms of dementia, including memory loss, confusion, and delayed retrieval times. As the network's capacity is exceeded, retrieval errors increase, mirroring the cognitive confusion observed in Alzheimer's patients. Additionally, we simulate the impact of synaptic degradation by varying the sparsity of the weight matrix, showing impaired memory recall and reduced retrieval success as noise levels increase. Furthermore, we extend our model to connect memory loss with biochemical processes linked to Alzheimer's. By simulating the role of reduced insulin sensitivity over time, we show how it can trigger increased calcium influx into mitochondria, leading to misfolded proteins and the formation of amyloid plaques. These findings, modeled over time, suggest that both neuronal degradation and metabolic factors contribute to the progressive decline seen in Alzheimer's disease. Our work offers a computational framework for understanding the dual impact of synaptic and metabolic dysfunction in neurodegenerative diseases.
- Abstract(参考訳): 本稿では, ホップフィールドモデルを用いて, 記憶障害とアルツハイマー病特有の生化学的プロセスの両方を解明する。
記憶パターンの増大とシナプス重みへのノイズ導入を通じて神経死とシナプス劣化をシミュレートすることにより,記憶喪失,混乱,遅延検索時間を含む認知症の症状を示す。
ネットワークの容量を超えると、検索エラーが増加し、アルツハイマー病患者の認知的混乱が反映される。
さらに,重み行列の間隔の変化によるシナプス劣化の影響をシミュレートし,ノイズレベルの増加に伴って記憶障害が生じ,検索成功率が低下することを示した。
さらに、このモデルを拡張し、記憶喪失とアルツハイマー病に関連する生化学過程を結びつける。
経時的にインスリン感受性を低下させる役割をシミュレートすることにより、ミトコンドリアへのカルシウム流入が増加し、タンパク質が誤って折り畳み、アミロイドプラークが形成されることを示す。
これらの知見は、時間とともにモデル化され、神経細胞の劣化と代謝因子の両方がアルツハイマー病の進行性の低下に寄与していることを示唆している。
我々の研究は、神経変性疾患におけるシナプスと代謝障害の二重影響を理解するための計算フレームワークを提供する。
関連論文リスト
- Stable Hadamard Memory: Revitalizing Memory-Augmented Agents for Reinforcement Learning [64.93848182403116]
現在のディープラーニングメモリモデルは、部分的に観察可能で長期にわたる強化学習環境で苦労している。
本稿では,強化学習エージェントのための新しい記憶モデルであるStable Hadamard Memoryを紹介する。
我々の手法は、部分的に観測可能なベンチマークに挑戦する上で、最先端のメモリベースの手法よりも大幅に優れています。
論文 参考訳(メタデータ) (2024-10-14T03:50:17Z) - Study of Brain Network in Alzheimers Disease Using Wavelet-Based Graph Theory Method [0.0]
アルツハイマー病(英語: Alzheimer's disease、AD)は、記憶喪失と認知低下を特徴とする神経変性疾患である。
ピアソンの相関のような伝統的な手法は相関行列を計算するために使われてきた。
本稿では、離散ウェーブレット変換(DWT)とグラフ理論を統合し、脳ネットワークの動的挙動をモデル化する新しい手法を提案する。
論文 参考訳(メタデータ) (2024-09-06T07:26:14Z) - Vision Transformers and Bi-LSTM for Alzheimer's Disease Diagnosis from
3D MRI [0.0]
早期に診断された場合、アルツハイマー病(AD)を治療・治療することができる。
本研究では、視覚変換器(ViT)とバイLSTMを用いて、アルツハイマー病の診断のためのMRI画像の処理を提案する。
提案手法は,ADの診断のための精度,精度,Fスコア,リコールの点で良好に機能する。
論文 参考訳(メタデータ) (2024-01-06T06:11:03Z) - Discovering a reaction-diffusion model for Alzheimer's disease by
combining PINNs with symbolic regression [2.84215006180269]
我々は、アルツハイマー病の進行の数学的モデルを見つけるために、学習と人工知能を使用します。
具体的には、物理情報ニューラルネットワーク(PIN)とシンボリックレグレッションを統合し、タウタンパク質のミスフォールディングのための反応拡散型偏微分方程式を発見する。
論文 参考訳(メタデータ) (2023-07-16T17:16:21Z) - Long Short-term Memory with Two-Compartment Spiking Neuron [64.02161577259426]
LSTM-LIFとよばれる,生物学的にインスパイアされたLong Short-Term Memory Leaky Integrate-and-Fireのスパイキングニューロンモデルを提案する。
実験結果は,時間的分類タスクの多種多様な範囲において,優れた時間的分類能力,迅速な訓練収束,ネットワークの一般化性,LSTM-LIFモデルの高エネルギー化を実証した。
したがって、この研究は、新しいニューロモルフィック・コンピューティング・マシンにおいて、困難な時間的処理タスクを解決するための、無数の機会を開放する。
論文 参考訳(メタデータ) (2023-07-14T08:51:03Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - A Convolutional-based Model for Early Prediction of Alzheimer's based on
the Dementia Stage in the MRI Brain Images [0.0]
アルツハイマー病は、現在治療法を持っていないが、早期に診断することは、病気の重症度を減らすのに役立つ。
本稿では,磁気共鳴画像(MRI)画像から成人の認知症のステージを決定するために,深層畳み込みニューラルネットワークを用いた学習モデルを提案する。
論文 参考訳(メタデータ) (2023-02-02T21:10:31Z) - Learning Human Cognitive Appraisal Through Reinforcement Memory Unit [63.83306892013521]
逐次評価タスクにおける人間の認知評価の効果を生かしたリカレントニューラルネットワークのためのメモリ強調機構を提案する。
記憶増強機構を2つの正および負の強化記憶とともに評価状態を含む強化記憶ユニット(RMU)として概念化する。
論文 参考訳(メタデータ) (2022-08-06T08:56:55Z) - Reducing Catastrophic Forgetting in Self Organizing Maps with
Internally-Induced Generative Replay [67.50637511633212]
生涯学習エージェントは、パターン知覚データの無限のストリームから継続的に学習することができる。
適応するエージェントを構築する上での歴史的難しさの1つは、ニューラルネットワークが新しいサンプルから学ぶ際に、以前取得した知識を維持するのに苦労していることである。
この問題は破滅的な忘れ(干渉)と呼ばれ、今日の機械学習の領域では未解決の問題のままである。
論文 参考訳(メタデータ) (2021-12-09T07:11:14Z) - Investigating Conversion from Mild Cognitive Impairment to Alzheimer's
Disease using Latent Space Manipulation [0.23931689873603598]
本稿では、MCIからアルツハイマー病への変換の識別子である変数を発見するためのディープラーニングフレームワークを提案する。
特に、MCIおよびアルツハイマー病患者で訓練された変分自己エンコーダネットワークの潜時空間を操作し、重要な特性を得る。
生成型デコーダとアルツハイマー病の診断に繋がる寸法を利用して、データセット中のMCI患者から合成認知症患者を生成する。
論文 参考訳(メタデータ) (2021-11-16T21:48:09Z) - A Graph Gaussian Embedding Method for Predicting Alzheimer's Disease
Progression with MEG Brain Networks [59.15734147867412]
アルツハイマー病(AD)に関連する機能的脳ネットワークの微妙な変化を特徴付けることは、疾患進行の早期診断と予測に重要である。
我々は、多重グラフガウス埋め込みモデル(MG2G)と呼ばれる新しいディープラーニング手法を開発した。
我々はMG2Gを用いて、MEG脳ネットワークの内在性潜在性次元を検出し、軽度認知障害(MCI)患者のADへの進行を予測し、MCIに関連するネットワーク変化を伴う脳領域を同定した。
論文 参考訳(メタデータ) (2020-05-08T02:29:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。