Explaining Hypergraph Neural Networks: From Local Explanations to Global Concepts
- URL: http://arxiv.org/abs/2410.07764v1
- Date: Thu, 10 Oct 2024 09:50:28 GMT
- Title: Explaining Hypergraph Neural Networks: From Local Explanations to Global Concepts
- Authors: Shiye Su, Iulia Duta, Lucie Charlotte Magister, Pietro LiĆ²,
- Abstract summary: We introduce SHypX, the first model-agnostic post-hoc explainer for hypergraph neural networks.
At the instance-level, it performs input attribution by discretely sampling explanation subhypergraphs optimized to be faithful and concise.
At the model-level, it produces global explanation subhypergraphs using unsupervised concept extraction.
- Score: 18.220099086165394
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Hypergraph neural networks are a class of powerful models that leverage the message passing paradigm to learn over hypergraphs, a generalization of graphs well-suited to describing relational data with higher-order interactions. However, such models are not naturally interpretable, and their explainability has received very limited attention. We introduce SHypX, the first model-agnostic post-hoc explainer for hypergraph neural networks that provides both local and global explanations. At the instance-level, it performs input attribution by discretely sampling explanation subhypergraphs optimized to be faithful and concise. At the model-level, it produces global explanation subhypergraphs using unsupervised concept extraction. Extensive experiments across four real-world and four novel, synthetic hypergraph datasets demonstrate that our method finds high-quality explanations which can target a user-specified balance between faithfulness and concision, improving over baselines by 25 percent points in fidelity on average.
Related papers
- SPHINX: Structural Prediction using Hypergraph Inference Network [19.853413818941608]
We introduce Structural Prediction using Hypergraph Inference Network (SPHINX), a model that learns to infer a latent hypergraph structure in an unsupervised way.
We show that the recent advancement in k-subset sampling represents a suitable tool for producing discrete hypergraph structures.
The resulting model can generate the higher-order structure necessary for any modern hypergraph neural network.
arXiv Detail & Related papers (2024-10-04T07:49:57Z) - Hypergraph Transformer for Semi-Supervised Classification [50.92027313775934]
We propose a novel hypergraph learning framework, HyperGraph Transformer (HyperGT)
HyperGT uses a Transformer-based neural network architecture to effectively consider global correlations among all nodes and hyperedges.
It achieves comprehensive hypergraph representation learning by effectively incorporating global interactions while preserving local connectivity patterns.
arXiv Detail & Related papers (2023-12-18T17:50:52Z) - Hypergraph Node Representation Learning with One-Stage Message Passing [28.311325846217574]
We propose a novel one-stage message passing paradigm to model both global and local information propagation for hypergraphs.
We integrate this paradigm into HGraphormer, a Transformer-based framework for hypergraph node representation learning.
arXiv Detail & Related papers (2023-12-01T04:10:00Z) - D4Explainer: In-Distribution GNN Explanations via Discrete Denoising
Diffusion [12.548966346327349]
Graph Neural Networks (GNNs) play a vital role in model auditing and ensuring trustworthy graph learning.
D4Explainer is a novel approach that provides in-distribution GNN explanations for both counterfactual and model-level explanation scenarios.
It is the first unified framework that combines both counterfactual and model-level explanations.
arXiv Detail & Related papers (2023-10-30T07:41:42Z) - From Hypergraph Energy Functions to Hypergraph Neural Networks [94.88564151540459]
We present an expressive family of parameterized, hypergraph-regularized energy functions.
We then demonstrate how minimizers of these energies effectively serve as node embeddings.
We draw parallels between the proposed bilevel hypergraph optimization, and existing GNN architectures in common use.
arXiv Detail & Related papers (2023-06-16T04:40:59Z) - DualHGNN: A Dual Hypergraph Neural Network for Semi-Supervised Node
Classification based on Multi-View Learning and Density Awareness [3.698434507617248]
Graph-based semi-supervised node classification has been shown to become a state-of-the-art approach in many applications with high research value and significance.
This paper proposes the Dual Hypergraph Neural Network (DualHGNN), a new dual connection model integrating both hypergraph structure learning and hypergraph representation learning simultaneously in a unified architecture.
arXiv Detail & Related papers (2023-06-07T07:40:04Z) - Towards Explanation for Unsupervised Graph-Level Representation Learning [108.31036962735911]
Existing explanation methods focus on the supervised settings, eg, node classification and graph classification, while the explanation for unsupervised graph-level representation learning is still unexplored.
In this paper, we advance the Information Bottleneck principle (IB) to tackle the proposed explanation problem for unsupervised graph representations, which leads to a novel principle, textitUnsupervised Subgraph Information Bottleneck (USIB)
We also theoretically analyze the connection between graph representations and explanatory subgraphs on the label space, which reveals that the robustness of representations benefit the fidelity of explanatory subgraphs.
arXiv Detail & Related papers (2022-05-20T02:50:15Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Message Passing Neural Networks for Hypergraphs [6.999112784624749]
We present the first graph neural network based on message passing capable of processing hypergraph-structured data.
We show that the proposed model defines a design space for neural network models for hypergraphs, thus generalizing existing models for hypergraphs.
arXiv Detail & Related papers (2022-03-31T12:38:22Z) - Hypergraph Convolutional Networks via Equivalency between Hypergraphs
and Undirected Graphs [59.71134113268709]
We present General Hypergraph Spectral Convolution(GHSC), a general learning framework that can handle EDVW and EIVW hypergraphs.
In this paper, we show that the proposed framework can achieve state-of-the-art performance.
Experiments from various domains including social network analysis, visual objective classification, protein learning demonstrate that the proposed framework can achieve state-of-the-art performance.
arXiv Detail & Related papers (2022-03-31T10:46:47Z) - Towards Deeper Graph Neural Networks [63.46470695525957]
Graph convolutions perform neighborhood aggregation and represent one of the most important graph operations.
Several recent studies attribute this performance deterioration to the over-smoothing issue.
We propose Deep Adaptive Graph Neural Network (DAGNN) to adaptively incorporate information from large receptive fields.
arXiv Detail & Related papers (2020-07-18T01:11:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.