論文の概要: Executing Arithmetic: Fine-Tuning Large Language Models as Turing Machines
- arxiv url: http://arxiv.org/abs/2410.07896v1
- Date: Thu, 10 Oct 2024 13:23:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 14:16:01.960127
- Title: Executing Arithmetic: Fine-Tuning Large Language Models as Turing Machines
- Title(参考訳): 演算算術:チューリングマシンとしての微調整大言語モデル
- Authors: Junyu Lai, Jiahe Xu, Yao Yang, Yunpeng Huang, Chun Cao, Jingwei Xu,
- Abstract要約: 大規模言語モデル(LLM)は、広範囲の自然言語処理と推論タスクで顕著な機能を示している。
チューリングマシンをエミュレートすることで,LCMがステップバイステップの計算を実行することを学べる構成可能な算術演算フレームワーク(CAEF)を提案する。
評価では, LLaMA 3.1-8B モデル上での7つの一般的な数学的操作に対して, CAEF は100%近い精度を達成している。
- 参考スコア(独自算出の注目度): 7.695524275630717
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing and reasoning tasks. However, their performance in the foundational domain of arithmetic remains unsatisfactory. When dealing with arithmetic tasks, LLMs often memorize specific examples rather than learning the underlying computational logic, limiting their ability to generalize to new problems. In this paper, we propose a Composable Arithmetic Execution Framework (CAEF) that enables LLMs to learn to execute step-by-step computations by emulating Turing Machines, thereby gaining a genuine understanding of computational logic. Moreover, the proposed framework is highly scalable, allowing composing learned operators to significantly reduce the difficulty of learning complex operators. In our evaluation, CAEF achieves nearly 100% accuracy across seven common mathematical operations on the LLaMA 3.1-8B model, effectively supporting computations involving operands with up to 100 digits, a level where GPT-4o falls short noticeably in some settings.
- Abstract(参考訳): 大規模言語モデル(LLM)は、広範囲の自然言語処理と推論タスクで顕著な機能を示している。
しかし、算術の基本領域におけるそれらの性能は相変わらず不満足である。
算術的なタスクを扱う場合、LLMは基礎となる計算論理を学習するよりも特定の例を記憶し、新しい問題に一般化する能力を制限する。
本稿では、チューリングマシンをエミュレートすることで、LCMがステップバイステップの計算を実行することを学べるようにし、計算論理を真に理解することのできる構成可能な算術実行フレームワーク(CAEF)を提案する。
さらに,提案するフレームワークは非常にスケーラブルで,複雑な演算子を学習する際の難易度を大幅に低減することができる。
評価では, LLaMA 3.1-8Bモデルにおいて, 最大100桁のオペランドを含む演算処理を効果的にサポートし, GPT-4o が顕著に低下するレベルである LLaMA 3.1-8B モデルにおいて, 約100%の精度を達成している。
関連論文リスト
- Unraveling Arithmetic in Large Language Models: The Role of Algebraic Structures [3.181878085746691]
大型言語モデル (LLM) は顕著な数学的能力を示しており、主にチェーン・オブ・シント (CoT) のプロンプトによって駆動されている。
本稿では,emphCommutativity やemphIdentity などの代数的構造を捉えることによって,LLM が算術を学習することを提案する。
この結果から,代数的構造を活用することでLLMの算術的能力が向上し,算術的性能向上への洞察が得られた。
論文 参考訳(メタデータ) (2024-11-25T10:23:11Z) - How Numerical Precision Affects Mathematical Reasoning Capabilities of LLMs [69.55103380185612]
本稿では,変圧器を用いた大規模言語モデルの数学的タスクにおける有効性に影響を与える重要な要因として,数値的精度を同定する。
その結果,数値精度の低いトランスフォーマーでは,繰り返し加算や整数乗算などの算術的なタスクに対処できないことがわかった。
対照的に、標準的な数値精度のトランスフォーマーは、モデルサイズを大幅に小さくすることで、これらのタスクを効率的に処理することができる。
論文 参考訳(メタデータ) (2024-10-17T17:59:35Z) - Large Language Models and the Extended Church-Turing Thesis [0.0]
本稿では,計算可能性理論と計算複雑性理論を用いて,大規模言語モデル(LLM)の計算能力について検討する。
固定的な(非適応的な) LLM は、計算量的に a, probably large, deterministic finite-state transducer と同値であることを示す。
本研究は,いくつかの関連分野と哲学の幅広い文脈における知見のメリットについて論じる。
論文 参考訳(メタデータ) (2024-09-11T03:09:55Z) - Interpreting and Improving Large Language Models in Arithmetic Calculation [72.19753146621429]
大規模言語モデル(LLM)は、多くのアプリケーションにまたがる顕著な可能性を示している。
本研究では,LLMが計算を行う特定のメカニズムを明らかにする。
LLMの計算性能を高めるために、これらの必須ヘッド/MLPを選択的に微調整する潜在的な利点について検討する。
論文 参考訳(メタデータ) (2024-09-03T07:01:46Z) - BigCodeBench: Benchmarking Code Generation with Diverse Function Calls and Complex Instructions [72.56339136017759]
BigCodeBenchは、大規模言語モデル(LLM)に対して、139のライブラリと7つのドメインから1140のきめ細かいタスクに対して、複数の関数呼び出しをツールとして呼び出すためのベンチマークである。
評価の結果,LLMは機能コールを正確に使用するための複雑な指示に従うことができず,スコアは最大60%,人的性能は97%と極めて低いことがわかった。
そこで本研究では,BigCodeBench-Instructという自然言語指向の変種を提案する。
論文 参考訳(メタデータ) (2024-06-22T15:52:04Z) - OccamLLM: Fast and Exact Language Model Arithmetic in a Single Step [7.7168728919692855]
本稿では,1つの自己回帰的なステップで正確な算術を可能にするフレームワークを提案する。
我々は LLM の隠蔽状態を用いて演算を行う記号的アーキテクチャを制御する。
シンボルモデル(OccamLlama)としてOccamNetを用いたLlama 3の実装は,1つの算術演算において100%の精度を実現する。
論文 参考訳(メタデータ) (2024-06-04T04:17:40Z) - Executing Natural Language-Described Algorithms with Large Language Models: An Investigation [48.461999568129166]
自然言語で概説したアルゴリズムを理解・実行するための,今日の大規模言語モデルの能力について検討する。
我々は、30個のアルゴリズムを選択し、300個のランダムサンプリングされたインスタンスを生成し、人気のあるLCMがこれらのアルゴリズムを理解し実行できるかを評価した。
この結果から,LLM,特にGPT-4は,重数値計算を伴わない限り,自然言語で記述されたプログラムを効果的に実行できることが判明した。
論文 参考訳(メタデータ) (2024-02-23T05:31:36Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
本稿では,コードと推論能力の相関性を測定するために,複雑性に富んだ推論スコア(CIRS)を提案する。
具体的には、抽象構文木を用いて構造情報をエンコードし、論理的複雑性を計算する。
コードはhttps://github.com/zjunlp/EasyInstructのEasyInstructフレームワークに統合される。
論文 参考訳(メタデータ) (2023-08-29T17:22:39Z) - PAL: Program-aided Language Models [112.94785609781503]
自然言語問題を理解するために,プログラム支援言語モデル(PaL)を提案する。
PaLはソリューションステップをPythonインタプリタのようなプログラムランタイムにオフロードする。
私たちは12のベンチマークで新しい最先端の結果を設定しました。
論文 参考訳(メタデータ) (2022-11-18T18:56:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。