論文の概要: D-Wave's Nonlinear-Program Hybrid Solver: Description and Performance Analysis
- arxiv url: http://arxiv.org/abs/2410.07980v1
- Date: Thu, 17 Oct 2024 14:07:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 06:15:07.789758
- Title: D-Wave's Nonlinear-Program Hybrid Solver: Description and Performance Analysis
- Title(参考訳): D-Waveの非線形プログラムハイブリッドソルバー:説明と性能解析
- Authors: Eneko Osaba, Pablo Miranda-Rodriguez,
- Abstract要約: D-Waveは2020年にHybrid Solver Serviceをローンチし、パフォーマンスと運用プロセスの最適化を目指すユーザのために、ソリューションのタイム・トゥ・ソリューションを加速する一連の方法を提供している。
本稿では, トラベリングセールスマン問題, クナップサック問題, 最大カット問題という3つの最適化問題にまたがる45のインスタンスのベンチマークを用いて, その性能評価を行う。
この比較的探索されていない解法の使用を容易にするため、これらの3つの最適化問題を解くのに使用される実装の詳細について述べる。
- 参考スコア(独自算出の注目度): 0.44241702149260353
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The development of advanced quantum-classical algorithms is among the most prominent strategies in quantum computing. Numerous hybrid solvers have been introduced recently. Many of these methods are created ad hoc to address specific use cases. However, several well-established schemes are frequently utilized to address optimization problems. In this context, D-Wave launched the Hybrid Solver Service in 2020, offering a portfolio of methods designed to accelerate time-to-solution for users aiming to optimize performance and operational processes. Recently, a new technique has been added to this portfolio: the Nonlinear-Program Hybrid Solver. This paper describes this solver and evaluates its performance through a benchmark of 45 instances across three combinatorial optimization problems: the Traveling Salesman Problem, the Knapsack Problem, and the Maximum Cut Problem. To facilitate the use of this relatively unexplored solver, we provide details of the implementation used to solve these three optimization problems.
- Abstract(参考訳): 先進的な量子古典的アルゴリズムの開発は、量子コンピューティングにおいて最も顕著な戦略の一つである。
最近、多くのハイブリッド・ソルバが導入されている。
これらのメソッドの多くは、特定のユースケースに対応するためにアドホックに作成されます。
しかし、いくつかのよく確立されたスキームは最適化問題に対処するために頻繁に利用される。
この状況下で、D-Waveは2020年にHybrid Solver Serviceをローンチし、パフォーマンスと運用プロセスの最適化を目的としたユーザのためのソリューションのポートフォリオを提供する。
最近、このポートフォリオに非線形プログラムハイブリッドソルバーという新しいテクニックが追加された。
本論文は, トラベリングセールスマン問題, クナップサック問題, 最大カット問題という3つの組合せ最適化問題に対する45のインスタンスのベンチマークを用いて, その性能評価を行う。
この比較的探索されていない解法の使用を容易にするため、これらの3つの最適化問題を解くのに使用される実装の詳細について述べる。
関連論文リスト
- Learning Multiple Initial Solutions to Optimization Problems [52.9380464408756]
厳密なランタイム制約の下で、同様の最適化問題を順次解決することは、多くのアプリケーションにとって不可欠である。
本稿では,問題インスタンスを定義するパラメータが与えられた初期解を多種多様に予測する学習を提案する。
提案手法は,すべての評価設定において有意かつ一貫した改善を実現し,必要な初期解の数に応じて効率よくスケールできることを実証した。
論文 参考訳(メタデータ) (2024-11-04T15:17:19Z) - Tensor Network Based HOBO Solver [0.0]
提案した解法は、定式化の観点から将来の拡張に有意義な可能性を持つ有望なツールである。
この解法は、量子コンピューティングにおける幅広い応用の有望な可能性を持っている。
論文 参考訳(メタデータ) (2024-07-23T00:33:34Z) - Optimized QUBO formulation methods for quantum computing [0.4999814847776097]
実世界の金融シナリオにインスパイアされたNPハード最適化問題に対して,我々の手法を適用する方法について述べる。
2つのD波量子異方体にこの問題の事例を提出し、これらのシナリオで使用される標準手法と新しい手法の性能を比較した。
論文 参考訳(メタデータ) (2024-06-11T19:59:05Z) - Analyzing and Enhancing the Backward-Pass Convergence of Unrolled
Optimization [50.38518771642365]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
この設定における中心的な課題は最適化問題の解によるバックプロパゲーションであり、しばしば閉形式を欠いている。
本稿では, 非線形最適化の後方通過に関する理論的知見を提供し, 特定の反復法による線形システムの解と等価であることを示す。
Folded Optimizationと呼ばれるシステムが提案され、非ローリングなソルバ実装からより効率的なバックプロパゲーションルールを構築する。
論文 参考訳(メタデータ) (2023-12-28T23:15:18Z) - Accelerating Cutting-Plane Algorithms via Reinforcement Learning
Surrogates [49.84541884653309]
凸離散最適化問題に対する現在の標準的なアプローチは、カットプレーンアルゴリズムを使うことである。
多くの汎用カット生成アルゴリズムが存在するにもかかわらず、大規模な離散最適化問題は、難易度に悩まされ続けている。
そこで本研究では,強化学習による切削平面アルゴリズムの高速化手法を提案する。
論文 参考訳(メタデータ) (2023-07-17T20:11:56Z) - Socio-cognitive Optimization of Time-delay Control Problems using
Evolutionary Metaheuristics [89.24951036534168]
メタヒューリスティックス(Metaheuristics)は、古典的なアプローチでは解決できない難解な問題を解くために使用される普遍的な最適化アルゴリズムである。
本稿では,キャストに基づく新しい社会認知メタヒューリスティックの構築を目標とし,このアルゴリズムのいくつかのバージョンを時間遅延システムモデルの最適化に適用する。
論文 参考訳(メタデータ) (2022-10-23T22:21:10Z) - A Study of Scalarisation Techniques for Multi-Objective QUBO Solving [0.0]
量子および量子に着想を得た最適化アルゴリズムは、学術ベンチマークや実世界の問題に適用した場合に有望な性能を示す。
しかし、QUBOソルバは単目的解法であり、複数の目的による問題の解法をより効率的にするためには、そのような多目的問題を単目的問題に変換する方法を決定する必要がある。
論文 参考訳(メタデータ) (2022-10-20T14:54:37Z) - Classically-Boosted Quantum Optimization Algorithm [0.0]
我々は、量子最適化を強化するために既存の古典的手法を活用する自然なアプローチを探求する。
具体的には、近似解を見つけるために古典的なアルゴリズムを実行し、量子回路を用いて高品質な解の「近傍」を探索する。
CBQOA の Max 3SAT および Max Bisection への応用を実証し,これらの問題に対する従来のアプローチよりも優れていることを示す実証的証拠を提供する。
論文 参考訳(メタデータ) (2022-03-25T23:36:14Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - Analysis of Vehicle Routing Problem in Presence of Noisy Channels [0.0]
車両ルーティング問題(VRP)はNPハード最適化問題である。
この研究は、変数 ANSATZ 上の変分量子固有解法を用いて、3 と 4 の都市に基本的な VRP ソリューションを構築する。
論文 参考訳(メタデータ) (2021-12-28T10:20:42Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。