論文の概要: Classically-Boosted Quantum Optimization Algorithm
- arxiv url: http://arxiv.org/abs/2203.13936v1
- Date: Fri, 25 Mar 2022 23:36:14 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-20 20:38:41.781449
- Title: Classically-Boosted Quantum Optimization Algorithm
- Title(参考訳): 古典ブースト量子最適化アルゴリズム
- Authors: Guoming Wang
- Abstract要約: 我々は、量子最適化を強化するために既存の古典的手法を活用する自然なアプローチを探求する。
具体的には、近似解を見つけるために古典的なアルゴリズムを実行し、量子回路を用いて高品質な解の「近傍」を探索する。
CBQOA の Max 3SAT および Max Bisection への応用を実証し,これらの問題に対する従来のアプローチよりも優れていることを示す実証的証拠を提供する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Considerable effort has been made recently in the development of heuristic
quantum algorithms for solving combinatorial optimization problems. Meanwhile,
these problems have been studied extensively in classical computing for
decades. In this paper, we explore a natural approach to leveraging existing
classical techniques to enhance quantum optimization. Specifically, we run a
classical algorithm to find an approximate solution and then use a quantum
circuit to search its "neighborhood" for higher-quality solutions. We propose
the Classically-Boosted Quantum Optimization Algorithm (CBQOA) that is based on
this idea and can solve a wide range of combinatorial optimization problems,
including all unconstrained problems and many important constrained problems
such as Max Bisection, Maximum Independent Set, Minimum Vertex Cover, Portfolio
Optimization, Traveling Salesperson and so on. A crucial component of this
algorithm is an efficiently-implementable continuous-time quantum walk (CTQW)
on a properly-constructed graph that connects the feasible solutions. CBQOA
utilizes this CTQW and the output of an efficient classical procedure to create
a suitable superposition of the feasible solutions which is then processed in
certain way. This algorithm has the merits that it solves constrained problems
without modifying their cost functions, confines the evolution of the quantum
state to the feasible subspace, and does not rely on efficient indexing of the
feasible solutions. We demonstrate the applications of CBQOA to Max 3SAT and
Max Bisection, and provide empirical evidence that it outperforms previous
approaches on these problems.
- Abstract(参考訳): 近年,組合せ最適化問題の解法としてヒューリスティック量子アルゴリズムの開発が進められている。
一方、これらの問題は古典コンピューティングにおいて数十年にわたって広く研究されてきた。
本稿では,既存の古典的手法を量子最適化に活用する自然なアプローチについて検討する。
具体的には、近似解を見つけるために古典的なアルゴリズムを実行し、量子回路を使って高品質な解を探索する。
本稿では,このアイデアをベースとして,制約のない問題やMax Bisection, Maximum Independent Set, Minimum Vertex Cover, Portfolio Optimization, Traveling Salespersonなど,多くの重要な制約問題を含む,幅広い組合せ最適化問題を解くことができる,古典的ブースト量子最適化アルゴリズム(CBQOA)を提案する。
このアルゴリズムの重要な構成要素は、実現可能な解を接続する適切に構築されたグラフ上の効率的な実装可能な連続時間量子ウォーク(CTQW)である。
CBQOAはこのCTQWと効率的な古典的手順の出力を利用して、ある方法で処理される実行可能な解の適切な重ね合わせを生成する。
このアルゴリズムは、コスト関数を変更することなく制約のある問題を解き、量子状態の進化を実現可能な部分空間に限定し、実現可能な解の効率的なインデックス化に依存しないという利点を持っている。
CBQOA の Max 3SAT および Max Bisection への応用を実証し,これらの問題に対する従来のアプローチよりも優れていることを示す実証的証拠を提供する。
関連論文リスト
- Sum-of-Squares inspired Quantum Metaheuristic for Polynomial Optimization with the Hadamard Test and Approximate Amplitude Constraints [76.53316706600717]
最近提案された量子アルゴリズムarXiv:2206.14999は半定値プログラミング(SDP)に基づいている
SDPにインスパイアされた量子アルゴリズムを2乗和に一般化する。
この結果から,本アルゴリズムは大きな問題に適応し,最もよく知られた古典学に近似することが示唆された。
論文 参考訳(メタデータ) (2024-08-14T19:04:13Z) - Variational Quantum Algorithms for Combinatorial Optimization [0.571097144710995]
変分アルゴリズム (VQA) は, NISQシステムの実用化に向けた最有力候補の1つである。
本稿では,VQAの現状と最近の発展を考察し,近似最適化への適用性を強調した。
10ノードと20ノードのグラフ上でMaxCut問題を解くために,深さの異なるQAOA回路を実装した。
論文 参考訳(メタデータ) (2024-07-08T22:02:39Z) - Solving non-native combinatorial optimization problems using hybrid
quantum-classical algorithms [0.0]
組合せ最適化は、物流から金融まで幅広い分野に適用可能な、困難な問題である。
量子コンピューティングは、様々なアルゴリズムを用いてこれらの問題を解決するために使われてきた。
この研究は、量子と古典のリソースをハイブリッドなアプローチで統合することで、これらの課題を克服する枠組みを提示している。
論文 参考訳(メタデータ) (2024-03-05T17:46:04Z) - Iterative Quantum Algorithms for Maximum Independent Set: A Tale of
Low-Depth Quantum Algorithms [0.0]
我々は、反復最大量子アルゴリズム(Iterative Maximum Quantum Algorithms)と呼ばれる、量子最適化のための新しいハイブリッドアプローチのクラスについて研究する。
深度$p=1$のQAOAの場合、このアルゴリズムはMISの古典的欲求アルゴリズムと全く同じ操作と選択を行う。
論文 参考訳(メタデータ) (2023-09-22T18:00:03Z) - A Review on Quantum Approximate Optimization Algorithm and its Variants [47.89542334125886]
量子近似最適化アルゴリズム(Quantum Approximate Optimization Algorithm、QAOA)は、難解な最適化問題を解くことを目的とした、非常に有望な変分量子アルゴリズムである。
この総合的なレビューは、様々なシナリオにおけるパフォーマンス分析を含む、QAOAの現状の概要を提供する。
我々は,提案アルゴリズムの今後の展望と方向性を探りながら,選択したQAOA拡張と変種の比較研究を行う。
論文 参考訳(メタデータ) (2023-06-15T15:28:12Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
単一画像超解像(SISR)問題を解くために,量子コンピューティングに基づくアルゴリズムを提案する。
提案したAQCアルゴリズムは、SISRの精度を維持しつつ、古典的なアナログよりも向上したスピードアップを実現する。
論文 参考訳(メタデータ) (2023-04-18T11:57:15Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Solving Quadratic Unconstrained Binary Optimization with
divide-and-conquer and quantum algorithms [0.0]
分割・対数手法を用いて、元の問題を小さな問題の集合に還元する。
この手法は任意のQUBOインスタンスに適用でき、全古典的またはハイブリッドな量子古典的アプローチにつながる。
論文 参考訳(メタデータ) (2021-01-19T19:00:40Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。