論文の概要: Optimal Transportation by Orthogonal Coupling Dynamics
- arxiv url: http://arxiv.org/abs/2410.08060v1
- Date: Thu, 10 Oct 2024 15:53:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 05:45:05.962834
- Title: Optimal Transportation by Orthogonal Coupling Dynamics
- Title(参考訳): 直交結合ダイナミクスによる最適輸送
- Authors: Mohsen Sadr, Peyman Mohajerin Esfehani, Hossein Gorji,
- Abstract要約: 本稿では,プロジェクション型勾配勾配法に基づくモンゲ・カントロビッチ問題に対処する新しい枠組みを提案する。
マイクロダイナミクスは条件付き期待の概念に基づいて構築され、そこでは意見力学との関係を探求する。
提案手法は,計算性能がよいランダムマップを復元できることを実証する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many numerical algorithms and learning tasks rest on solution of the Monge-Kantorovich problem and corresponding Wasserstein distances. While the natural approach is to treat the problem as an infinite-dimensional linear programming, such a methodology severely limits the computational performance due to the polynomial scaling with respect to the sample size along with intensive memory requirements. We propose a novel alternative framework to address the Monge-Kantorovich problem based on a projection type gradient descent scheme. The micro-dynamics is built on the notion of the conditional expectation, where the connection with the opinion dynamics is explored and leveraged to build compact numerical schemes. We demonstrate that the devised dynamics recovers random maps with favourable computational performance. Along with the theoretical insight, the provided dynamics paves the way for innovative approaches to construct numerical schemes for computing optimal transport maps as well as Wasserstein distances.
- Abstract(参考訳): 多くの数値アルゴリズムと学習タスクは、モンゲ・カントロヴィッチ問題と対応するワッサーシュタイン距離の解に依存する。
自然なアプローチは、問題を無限次元線形プログラミングとして扱うことであるが、そのような手法は、集中的なメモリ要求とともにサンプルサイズに対する多項式スケーリングによる計算性能を著しく制限する。
射影型勾配降下スキームに基づくモンゲ・カントロヴィチ問題に対処する新しい枠組みを提案する。
マイクロダイナミクスは条件予測の概念に基づいて構築され、そこでは意見力学との接続を探索し、活用してコンパクトな数値スキームを構築する。
提案手法は,計算性能がよいランダムマップを復元できることを実証する。
理論的な洞察とともに、提供された力学はワッサーシュタイン距離だけでなく最適な輸送地図を計算するための数値スキームを構築するための革新的なアプローチの道を開く。
関連論文リスト
- Efficient Neural Network Approaches for Conditional Optimal Transport with Applications in Bayesian Inference [1.740133468405535]
静的および条件付き最適輸送(COT)問題の解を近似する2つのニューラルネットワークアプローチを提案する。
我々は、ベンチマークデータセットとシミュレーションに基づく逆問題を用いて、両アルゴリズムを競合する最先端のアプローチと比較する。
論文 参考訳(メタデータ) (2023-10-25T20:20:09Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Generative modeling of time-dependent densities via optimal transport
and projection pursuit [3.069335774032178]
本稿では,時間的モデリングのための一般的なディープラーニングアルゴリズムの代替として,安価に提案する。
我々の手法は最先端の解法と比較して非常に競争力がある。
論文 参考訳(メタデータ) (2023-04-19T13:50:13Z) - Distributed Bayesian Learning of Dynamic States [65.7870637855531]
提案アルゴリズムは有限状態隠れマルコフモデルに対する分散ベイズフィルタタスクである。
逐次状態推定や、動的環境下でのソーシャルネットワーク上での意見形成のモデル化に使用できる。
論文 参考訳(メタデータ) (2022-12-05T19:40:17Z) - Multi-Objective Policy Gradients with Topological Constraints [108.10241442630289]
本稿では, PPOアルゴリズムの簡単な拡張により, TMDPにおけるポリシー勾配に対する新しいアルゴリズムを提案する。
シミュレーションと実ロボットの両方の目的を任意に並べた実世界の多目的ナビゲーション問題に対して,これを実証する。
論文 参考訳(メタデータ) (2022-09-15T07:22:58Z) - The Dynamics of Riemannian Robbins-Monro Algorithms [101.29301565229265]
本稿では,Robins と Monro のセミナル近似フレームワークを一般化し拡張するリーマンアルゴリズムの族を提案する。
ユークリッドのそれと比較すると、リーマンのアルゴリズムは多様体上の大域線型構造が欠如しているため、はるかに理解されていない。
ユークリッド・ロビンス=モンロスキームの既存の理論を反映し拡張するほぼ確実な収束結果の一般的なテンプレートを提供する。
論文 参考訳(メタデータ) (2022-06-14T12:30:11Z) - Critic Sequential Monte Carlo [15.596665321375298]
CriticSMCは、ソフトQ関数係数を持つシーケンシャルモンテカルロの新たな合成から構築された推論として計画する新しいアルゴリズムである。
シミュレーションにおける自動運転車衝突回避実験は、計算労力に対する屈折の最小化の観点から、ベースラインに対する改善を実証する。
論文 参考訳(メタデータ) (2022-05-30T23:14:24Z) - Dynamic Origin-Destination Matrix Estimation in Urban Traffic Networks [0.05735035463793007]
この問題を二段階最適化問題としてモデル化する。
内部レベルでは、暫定的な旅行需要を前提として、動的な交通割当問題を解決し、利用者の出身地と目的地間のルーティングを決定する。
外層部では,交通ネットワーク内のセンサによって測定された車両数と内層部で発生したカウンタの差を最小限に抑えることを目的として,旅行数とその出発点および目的地の調整を行う。
論文 参考訳(メタデータ) (2022-01-31T21:33:46Z) - Adaptive Projected Residual Networks for Learning Parametric Maps from
Sparse Data [5.920947681019466]
限られた訓練データから高次元パラメトリックマップを学習するための擬似サロゲートフレームワークを提案する。
これらの応用には、ベイジアン逆問題、最適実験設計、不確実性の下での最適設計と制御のような「外部ループ」問題が含まれる。
論文 参考訳(メタデータ) (2021-12-14T01:29:19Z) - Iterative Algorithm Induced Deep-Unfolding Neural Networks: Precoding
Design for Multiuser MIMO Systems [59.804810122136345]
本稿では,AIIDNN(ディープ・アンフォールディング・ニューラルネット)を一般化した,ディープ・アンフォールディングのためのフレームワークを提案する。
古典的重み付き最小二乗誤差(WMMSE)反復アルゴリズムの構造に基づく効率的なIAIDNNを提案する。
提案したIAIDNNは,計算複雑性を低減した反復WMMSEアルゴリズムの性能を効率よく向上することを示す。
論文 参考訳(メタデータ) (2020-06-15T02:57:57Z) - A Near-Optimal Gradient Flow for Learning Neural Energy-Based Models [93.24030378630175]
学習エネルギーベースモデル(EBM)の勾配流を最適化する新しい数値スキームを提案する。
フォッカー・プランク方程式から大域相対エントロピーの2階ワッサーシュタイン勾配流を導出する。
既存のスキームと比較して、ワッサーシュタイン勾配流は実データ密度を近似するより滑らかで近似的な数値スキームである。
論文 参考訳(メタデータ) (2019-10-31T02:26:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。