論文の概要: Non-linear reduced modeling of dynamical systems using kernel methods and low-rank approximation
- arxiv url: http://arxiv.org/abs/1710.10919v6
- Date: Wed, 19 Feb 2025 08:54:07 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-24 12:49:53.106033
- Title: Non-linear reduced modeling of dynamical systems using kernel methods and low-rank approximation
- Title(参考訳): カーネル法と低ランク近似を用いた力学系の非線形還元モデリング
- Authors: Patrick Héas, Cédric Herzet, Benoit Combès,
- Abstract要約: 我々は,カーネルヒルベルト空間における線形近似に基づく非線形力学のデータ駆動還元モデリングのための新しい効率的なアルゴリズムを提案する。
このアルゴリズムは、カーネルベースの計算を有利に活用しながら、低ランク制約最適化問題の閉形式解を利用する。
- 参考スコア(独自算出の注目度): 5.935306543481018
- License:
- Abstract: Reduced modeling of a computationally demanding dynamical system aims at approximating its trajectories, while optimizing the trade-off between accuracy and computational complexity. In this work, we propose to achieve such an approximation by first embedding the trajectories in a reproducing kernel Hilbert space (RKHS), which exhibits appealing approximation and computational capabilities, and then solving the associated reduced model problem. More specifically, we propose a new efficient algorithm for data-driven reduced modeling of non-linear dynamics based on linear approximations in a RKHS. This algorithm takes advantage of the closed-form solution of a low-rank constraint optimization problem while exploiting advantageously kernel-based computations. Reduced modeling with this algorithm reveals a gain in approximation accuracy, as shown by numerical simulations, and in complexity with respect to existing approaches.
- Abstract(参考訳): 計算的に要求される力学系のモデリングの削減は、その軌道を近似し、精度と計算複雑性のトレードオフを最適化することを目的としている。
そこで本研究では,まず再生カーネルHilbert空間(RKHS)に軌道を埋め込むことにより,その近似を実現することを提案する。
より具体的には、RKHSにおける線形近似に基づく非線形力学のデータ駆動還元モデリングのための新しい効率的なアルゴリズムを提案する。
このアルゴリズムは、カーネルベースの計算を有利に活用しながら、低ランク制約最適化問題の閉形式解を利用する。
このアルゴリズムによるモデリングの削減は、数値シミュレーションで示されているように近似精度が向上し、既存のアプローチに関して複雑さが増すことを示している。
関連論文リスト
- Equation discovery framework EPDE: Towards a better equation discovery [50.79602839359522]
進化的最適化に基づく発見フレームワークであるEPDEアルゴリズムを強化する。
提案手法は基本関数や個人差分といった基本構造ブロックを用いて用語を生成する。
我々は,提案アルゴリズムの耐雑音性および全体的な性能を,最先端の方程式探索フレームワークであるSINDyの結果と比較することによって検証する。
論文 参考訳(メタデータ) (2024-12-28T15:58:44Z) - A parametric framework for kernel-based dynamic mode decomposition using deep learning [0.0]
提案されたフレームワークは、オフラインとオンラインの2つのステージで構成されている。
オンラインステージでは、これらのLANDOモデルを活用して、所望のタイミングで新しいデータを生成する。
高次元力学系に次元還元法を適用して, トレーニングの計算コストを低減させる。
論文 参考訳(メタデータ) (2024-09-25T11:13:50Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
本稿では,ハイパースペクトル画像のデコンボリューション問題に対処する新しい手法を提案する。
新しい最適化問題を定式化し、学習可能な正規化器をニューラルネットワークの形で活用する。
導出した反復解法は、Deep Equilibriumフレームワーク内の不動点計算問題として表現される。
論文 参考訳(メタデータ) (2023-06-10T08:25:16Z) - The Power of Learned Locally Linear Models for Nonlinear Policy
Optimization [26.45568696453259]
本稿では,一般的な非線形システムに対する簡易な戦略の厳密な分析を行う。
非線形系力学の局所線形モデルの推定と$mathttiLQR$のようなポリシー更新の繰り返しを行うアルゴリズムを解析する。
論文 参考訳(メタデータ) (2023-05-16T17:13:00Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
本稿では、分散正規化損失最小化問題に対する2倍加速勾配降下法(ADSGD)を提案する。
まず、ADSGDが線形収束率を達成でき、全体的な計算複雑性を低減できることを示す。
論文 参考訳(メタデータ) (2022-08-11T22:27:22Z) - Extension of Dynamic Mode Decomposition for dynamic systems with
incomplete information based on t-model of optimal prediction [69.81996031777717]
動的モード分解は、動的データを研究するための非常に効率的な手法であることが証明された。
このアプローチの適用は、利用可能なデータが不完全である場合に問題となる。
本稿では,森-Zwanzig分解の1次近似を考察し,対応する最適化問題を記述し,勾配に基づく最適化法を用いて解く。
論文 参考訳(メタデータ) (2022-02-23T11:23:59Z) - Momentum Accelerates the Convergence of Stochastic AUPRC Maximization [80.8226518642952]
高精度リコール曲線(AUPRC)に基づく領域の最適化について検討し,不均衡なタスクに広く利用されている。
我々は、$O (1/epsilon4)$のより優れた反復による、$epsilon$定常解を見つけるための新しい運動量法を開発する。
また,O(1/epsilon4)$と同じ複雑さを持つ適応手法の新たなファミリを設計し,実際により高速な収束を享受する。
論文 参考訳(メタデータ) (2021-07-02T16:21:52Z) - Surrogate Models for Optimization of Dynamical Systems [0.0]
本稿では,低次元サロゲートモデルを構築するためのスマートデータ駆動機構を提供する。
これらの代理モデルは、複雑な最適化問題の解の計算時間を短縮する。
論文 参考訳(メタデータ) (2021-01-22T14:09:30Z) - IDEAL: Inexact DEcentralized Accelerated Augmented Lagrangian Method [64.15649345392822]
本稿では,局所関数が滑らかで凸な分散最適化環境下での原始的手法設計のためのフレームワークを提案する。
提案手法は,加速ラグランジアン法により誘導されるサブプロブレム列を概ね解いたものである。
加速度勾配降下と組み合わせることで,収束速度が最適で,最近導出された下界と一致した新しい原始アルゴリズムが得られる。
論文 参考訳(メタデータ) (2020-06-11T18:49:06Z) - Model Reduction and Neural Networks for Parametric PDEs [9.405458160620533]
無限次元空間間の入出力マップをデータ駆動で近似するフレームワークを開発した。
提案されたアプローチは、最近のニューラルネットワークとディープラーニングの成功に動機づけられている。
入力出力マップのクラスと、入力に対する適切な選択された確率測度について、提案手法の収束性を証明する。
論文 参考訳(メタデータ) (2020-05-07T00:09:27Z) - Generalized Kernel-Based Dynamic Mode Decomposition [0.0]
我々は、カーネルベースの動的モード分解と呼ばれる最近のアプローチを一般化する低階制約最適化とカーネルベースの計算に基づくアルゴリズムを考案する。
このアルゴリズムの特徴は近似精度の向上、数値シミュレーションによる証明、計算複雑性である。
論文 参考訳(メタデータ) (2020-02-11T13:50:00Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。