Multi wavefunction overlap and multi entropy for topological ground states in (2+1) dimensions
- URL: http://arxiv.org/abs/2410.08284v1
- Date: Thu, 10 Oct 2024 18:12:03 GMT
- Title: Multi wavefunction overlap and multi entropy for topological ground states in (2+1) dimensions
- Authors: Bowei Liu, Junjia Zhang, Shuhei Ohyama, Yuya Kusuki, Shinsei Ryu,
- Abstract summary: Multi-wavefunction overlaps are generalizations of the quantum mechanical inner product for more than two quantum many-body states.
We show how these overlaps can be calculated using the bulk-boundary correspondence and (1+1)-dimensional edge theories.
We illustrate that the same technique can be used to evaluate the multi-entropy for (2+1)-dimensional gapped ground states.
- Score: 0.4660328753262075
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-wavefunction overlaps -- generalizations of the quantum mechanical inner product for more than two quantum many-body states -- are valuable tools for studying many-body physics. In this paper, we investigate the multi-wavefunction overlap of (2+1)-dimensional gapped ground states, focusing particularly on symmetry-protected topological (SPT) states. We demonstrate how these overlaps can be calculated using the bulk-boundary correspondence and (1+1)-dimensional edge theories, specifically conformal field theory. When applied to SPT phases, we show that the topological invariants, which can be thought of as discrete higher Berry phases, can be extracted from the multi-wavefunction overlap of four ground states with appropriate symmetry actions. Additionally, we find that the multi-wavefunction overlap can be expressed in terms of the realignment of reduced density matrices. Furthermore, we illustrate that the same technique can be used to evaluate the multi-entropy -- a quantum information theoretical quantity associated with multi-partition of many-body quantum states -- for (2+1)-dimensional gapped ground states. Combined with numerics, we show that the difference between multi-entropy for tripartition and second R\'enyi entropies is bounded from below by $(c_{{\it tot}}/4)\ln 2$ where $c_{{\it tot}}$ is the central charge of ungappable degrees of freedom. To calculate multi-entropy numerically for free fermion systems (such as Chern insulators), we develop the correlator method for multi-entropy.
Related papers
- A New Genuine Multipartite Entanglement Measure: from Qubits to Multiboundary Wormholes [0.0]
We introduce the Latent Entropy (L-entropy) as a novel measure to characterize the genuine multipartite entanglement in quantum systems.
We demonstrate that the measure functions as a multipartite pure state entanglement monotone and briefly address its extension to mixed multipartite states.
In particular, we show that for $n geq 5$, random states approximate 2-uniform states with maximal multipartite entanglement.
arXiv Detail & Related papers (2024-11-18T19:00:03Z) - Gaussian Entanglement Measure: Applications to Multipartite Entanglement
of Graph States and Bosonic Field Theory [50.24983453990065]
An entanglement measure based on the Fubini-Study metric has been recently introduced by Cocchiarella and co-workers.
We present the Gaussian Entanglement Measure (GEM), a generalization of geometric entanglement measure for multimode Gaussian states.
By providing a computable multipartite entanglement measure for systems with a large number of degrees of freedom, we show that our definition can be used to obtain insights into a free bosonic field theory.
arXiv Detail & Related papers (2024-01-31T15:50:50Z) - Entanglement entropy in conformal quantum mechanics [68.8204255655161]
We consider sets of states in conformal quantum mechanics associated to generators of time evolution whose orbits cover different regions of the time domain.
States labelled by a continuous global time variable define the two-point correlation functions of the theory seen as a one-dimensional conformal field theory.
arXiv Detail & Related papers (2023-06-21T14:21:23Z) - Neural-Network Quantum States for Periodic Systems in Continuous Space [66.03977113919439]
We introduce a family of neural quantum states for the simulation of strongly interacting systems in the presence of periodicity.
For one-dimensional systems we find very precise estimations of the ground-state energies and the radial distribution functions of the particles.
In two dimensions we obtain good estimations of the ground-state energies, comparable to results obtained from more conventional methods.
arXiv Detail & Related papers (2021-12-22T15:27:30Z) - Entanglement and precession in two-dimensional dynamical quantum phase
transitions [0.0]
We extend and investigate the notion of p- and eDQPTs in two-dimensional systems by considering semi-infinite ladders of varying width.
For square lattices, we find that pDQPTs and eDQPTs persist and are characterized by similar phenomenology as in 1D.
We also demonstrate that lattices with odd number of nearest neighbors give rise to phenomenologies beyond the one-dimensional classification.
arXiv Detail & Related papers (2021-12-21T14:57:10Z) - Quantum correlations, entanglement spectrum and coherence of
two-particle reduced density matrix in the Extended Hubbard Model [62.997667081978825]
We study the ground state properties of the one-dimensional extended Hubbard model at half-filling.
In particular, in the superconducting region, we obtain that the entanglement spectrum signals a transition between a dominant singlet (SS) to triplet (TS) pairing ordering in the system.
arXiv Detail & Related papers (2021-10-29T21:02:24Z) - Multipartitioning topological phases by vertex states and quantum
entanglement [9.519248546806903]
We discuss multipartitions of the gapped ground states of (2+1)-dimensional topological liquids into three spatial regions.
We compute various correlation measures, such as entanglement negativity, reflected entropy, and associated spectra.
As specific examples, we consider topological chiral $p$-wave superconductors and Chern insulators.
arXiv Detail & Related papers (2021-10-22T18:01:24Z) - Multipartite entanglement of the topologically ordered state in a
perturbed toric code [18.589873789289562]
We demonstrate that multipartite entanglement, witnessed by the quantum Fisher information (QFI), can characterize topological quantum phase transitions in the spin-$frac12$ toric code model.
Our results provide insights to topological phases, which are robust against external disturbances, and are candidates for topologically protected quantum computation.
arXiv Detail & Related papers (2021-09-07T20:20:21Z) - Multi-boundary generalization of thermofield double states and their
realization in critical quantum spin chains [0.0]
We show that thermofield double states are closely related to multi-point correlation functions.
We show how to approximately realize these multi-boundary TFD states numerically on the lattice.
One merit of the spin chain realization is that it allows us to probe the properties of the proposed multi-boundary TFD states.
arXiv Detail & Related papers (2021-08-20T20:56:13Z) - Dimerization of many-body subradiant states in waveguide quantum
electrodynamics [137.6408511310322]
We study theoretically subradiant states in the array of atoms coupled to photons propagating in a one-dimensional waveguide.
We introduce a generalized many-body entropy of entanglement based on exact numerical diagonalization.
We reveal the breakdown of fermionized subradiant states with increase of $f$ with emergence of short-ranged dimerized antiferromagnetic correlations.
arXiv Detail & Related papers (2021-06-17T12:17:04Z) - Radiative topological biphoton states in modulated qubit arrays [105.54048699217668]
We study topological properties of bound pairs of photons in spatially-modulated qubit arrays coupled to a waveguide.
For open boundary condition, we find exotic topological bound-pair edge states with radiative losses.
By joining two structures with different spatial modulations, we find long-lived interface states which may have applications in storage and quantum information processing.
arXiv Detail & Related papers (2020-02-24T04:44:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.