Long-lived multilevel coherences and spin-1 dynamics encoded in the rotational states of ultracold molecules
- URL: http://arxiv.org/abs/2412.15088v2
- Date: Tue, 27 May 2025 15:41:43 GMT
- Title: Long-lived multilevel coherences and spin-1 dynamics encoded in the rotational states of ultracold molecules
- Authors: Tom R. Hepworth, Daniel K. Ruttley, Fritz von Gierke, Philip D. Gregory, Alexander Guttridge, Simon L. Cornish,
- Abstract summary: Rotational states of ultracold polar molecules possess long radiative lifetimes, microwave-domain coupling, and tunable dipolar interactions.<n>The availability of numerous rotational states has inspired many proposed applications, including simulations of quantum magnetism, encodings of information in high-dimensional qudits, and synthetic dimensions with many synthetic lattice sites.<n>Here, we investigate how multilevel coherences between rotational states can be engineered by using optical tweezer traps operating close to a magic wavelength for a given pair of states.
- Score: 37.69303106863453
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Rotational states of ultracold polar molecules possess long radiative lifetimes, microwave-domain coupling, and tunable dipolar interactions. The availability of numerous rotational states has inspired many proposed applications, including simulations of quantum magnetism, encodings of information in high-dimensional qudits, and synthetic dimensions with many synthetic lattice sites. Many of these applications are yet to be realised, primarily because engineering long-lived coherent superpositions of multiple rotational states is highly challenging. Here, we investigate how multilevel coherences between rotational states can be engineered by using optical tweezer traps operating close to a magic wavelength for a given pair of states. By performing precision Ramsey spectroscopy we find the exact magic wavelengths and sensitivities to detuning errors for multiple rotational state superpositions. We find that, for a trap polarised parallel to the quantisation axis, the magic wavelengths are closely clustered enabling long-lived coherence across multiple rotational states simultaneously. As an example, we demonstrate simultaneous second-scale coherence between three rotational states. Utilising this extended coherence, we perform multiparameter estimation using a generalised Ramsey sequence and demonstrate coherent spin-1 dynamics encoded in the rotational states. With modest experimental improvements, we predict that second-scale coherent dynamics of ten rotational states should be readily achievable.
Related papers
- Nonlinear dynamical Casimir effect and Unruh entanglement in waveguide QED with parametrically modulated coupling [83.88591755871734]
We study theoretically an array of two-level qubits moving relative to a one-dimensional waveguide.
When the frequency of this motion approaches twice the qubit resonance frequency, it induces parametric generation of photons and excitation of the qubits.
We develop a comprehensive general theoretical framework that incorporates both perturbative diagrammatic techniques and a rigorous master-equation approach.
arXiv Detail & Related papers (2024-08-30T15:54:33Z) - Two-mode Squeezing in Floquet Engineered Power-law Interacting Spin Models [0.0]
We find scalable generation of entanglement in the form of two-mode squeezing between the layers can generically be achieved in powerlaw models.
spatially-temporally engineered interactions allow to significantly increase the generated entanglement and in fact achieve Heisenberg limited scaling.
arXiv Detail & Related papers (2024-02-28T19:00:06Z) - Joint Estimation of a Two-Phase Spin Rotation beyond Classical Limit [11.08018127134951]
In diverse application scenarios, the estimation of more than one single parameter is often required.<n>We report quantum-enhanced measurement of simultaneous spin rotations around two axes, making use of spin-nematic squeezing in an atomic Bose-Einstein condensate.
arXiv Detail & Related papers (2023-12-16T15:21:00Z) - Dynamics of spin-momentum entanglement from superradiant phase transitions [0.0]
We consider an experimentally feasible many-body cavity QED model describing a four-level system.
The resulting model comprises a pair of Dicke Hamiltonians constructed from pseudo-spin operators.
We discuss the role of cavity losses in steering the system's dynamics into such entangled states.
arXiv Detail & Related papers (2023-12-06T19:00:01Z) - Spin-motion coupling in a circular Rydberg state quantum simulator: case
of two atoms [0.0]
Circular Rydberg atoms are remarkable tools for the quantum simulation of spin arrays.
We study the interplay between the spin exchange and motional dynamics in the simple case of two interacting circular Rydberg atoms confined in harmonic traps.
arXiv Detail & Related papers (2023-03-21T19:16:24Z) - Dipolar spin-exchange and entanglement between molecules in an optical
tweezer array [0.0]
Ultracold polar molecules are promising candidate qubits for quantum computing.
Using a molecular optical tweezer array, single molecules can be moved and separately addressed for qubit operations.
We demonstrate a two-qubit gate to generate entanglement deterministically, an essential resource for all quantum information applications.
arXiv Detail & Related papers (2022-11-17T18:53:42Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Quantum Multicritical Behavior for Coupled Optical Cavities with Driven
Laser Fields [3.811778212199368]
We propose a system that a quantized light field interacts with a two-level atomic ensemble coupled by microwave fields in optical cavities.
We find that the quantum critical points can evolve into a Lifshitz point if the Rabi frequency of the light field is periodically in time.
Remarkably, the texture of atomic pseudo-spins can be used to characterize the quantum critical behaviors of the system.
arXiv Detail & Related papers (2022-02-09T10:57:53Z) - Rotation-driven transition into coexistent Josephson modes in an
atomtronic dc-SQUID [0.0]
We show that transitions to different arrays of coexistent regimes in the phase space can be attained by rotating a double-well system.
In particular, we show that within a determined rotation frequency interval, a hopping parameter, usually disregarded in nonrotating systems, turns out to rule the dynamics.
arXiv Detail & Related papers (2021-11-19T14:47:54Z) - Controlling the dynamics of ultracold polar molecules in optical
tweezers [0.0]
We study a prototypical scenario where two interacting polar molecules placed in separate traps are controlled using an external electric field.
This enables a quantum computing scheme in which the rotational structure is used to encode the qubit states.
arXiv Detail & Related papers (2021-10-11T18:25:02Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - Dynamical generation of spin squeezing in ultra-cold dipolar molecules [2.6950517214073693]
We study a bulk fermionic dipolar molecular gas in the quantum degenerate regime confined in a two-dimensional geometry.
We derive a long-range interacting XXZ model describing the many-body spin dynamics of the molecules valid in the regime where motional degrees of freedom are frozen.
arXiv Detail & Related papers (2020-11-16T19:00:08Z) - Observation of high-order Mollow triplet by quantum mode control with
concatenated continuous driving [8.674241138986925]
We report the first observation of high-order effects in the Mollow triplet structure due to strong driving.
Results are validated by the Floquet theory.
arXiv Detail & Related papers (2020-08-14T16:02:05Z) - Engineering multipartite entangled states in doubly pumped parametric
down-conversion processes [68.8204255655161]
We investigate the quantum state generated by optical parametric down-conversion in a $chi(2) $ medium driven by two modes.
The analysis shows the emergence of multipartite, namely 3- or 4-partite, entangled states in a subset of the modes generated by the process.
arXiv Detail & Related papers (2020-07-23T13:53:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.