Neural Architecture Search of Hybrid Models for NPU-CIM Heterogeneous AR/VR Devices
- URL: http://arxiv.org/abs/2410.08326v1
- Date: Thu, 10 Oct 2024 19:30:34 GMT
- Title: Neural Architecture Search of Hybrid Models for NPU-CIM Heterogeneous AR/VR Devices
- Authors: Yiwei Zhao, Ziyun Li, Win-San Khwa, Xiaoyu Sun, Sai Qian Zhang, Syed Shakib Sarwar, Kleber Hugo Stangherlin, Yi-Lun Lu, Jorge Tomas Gomez, Jae-Sun Seo, Phillip B. Gibbons, Barbara De Salvo, Chiao Liu,
- Abstract summary: We introduce H4H-NAS, a Neural Architecture Search framework to design efficient hybrid CNN/ViT models for heterogeneous edge systems.
Results from our Algo/HW co-design reveal up to 56.08% overall latency and 41.72% energy improvements.
- Score: 10.75997684204274
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Low-Latency and Low-Power Edge AI is essential for Virtual Reality and Augmented Reality applications. Recent advances show that hybrid models, combining convolution layers (CNN) and transformers (ViT), often achieve superior accuracy/performance tradeoff on various computer vision and machine learning (ML) tasks. However, hybrid ML models can pose system challenges for latency and energy-efficiency due to their diverse nature in dataflow and memory access patterns. In this work, we leverage the architecture heterogeneity from Neural Processing Units (NPU) and Compute-In-Memory (CIM) and perform diverse execution schemas to efficiently execute these hybrid models. We also introduce H4H-NAS, a Neural Architecture Search framework to design efficient hybrid CNN/ViT models for heterogeneous edge systems with both NPU and CIM. Our H4H-NAS approach is powered by a performance estimator built with NPU performance results measured on real silicon, and CIM performance based on industry IPs. H4H-NAS searches hybrid CNN/ViT models with fine granularity and achieves significant (up to 1.34%) top-1 accuracy improvement on ImageNet dataset. Moreover, results from our Algo/HW co-design reveal up to 56.08% overall latency and 41.72% energy improvements by introducing such heterogeneous computing over baseline solutions. The framework guides the design of hybrid network architectures and system architectures of NPU+CIM heterogeneous systems.
Related papers
- A Multi-Fidelity Graph U-Net Model for Accelerated Physics Simulations [1.2430809884830318]
We propose a novel GNN architecture, Multi-Fidelity U-Net, that utilizes the advantages of the multi-fidelity methods for enhancing the performance of the GNN model.
We show that the proposed approach performs significantly better in accuracy and data requirement.
We also present Multi-Fidelity U-Net Lite, a faster version of the proposed architecture, with 35% faster training, with 2 to 5% reduction in accuracy.
arXiv Detail & Related papers (2024-12-19T20:09:38Z) - Automatically Learning Hybrid Digital Twins of Dynamical Systems [56.69628749813084]
Digital Twins (DTs) simulate the states and temporal dynamics of real-world systems.
DTs often struggle to generalize to unseen conditions in data-scarce settings.
In this paper, we propose an evolutionary algorithm ($textbfHDTwinGen$) to autonomously propose, evaluate, and optimize HDTwins.
arXiv Detail & Related papers (2024-10-31T07:28:22Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - A Pairwise Comparison Relation-assisted Multi-objective Evolutionary Neural Architecture Search Method with Multi-population Mechanism [58.855741970337675]
Neural architecture search (NAS) enables re-searchers to automatically explore vast search spaces and find efficient neural networks.
NAS suffers from a key bottleneck, i.e., numerous architectures need to be evaluated during the search process.
We propose the SMEM-NAS, a pairwise com-parison relation-assisted multi-objective evolutionary algorithm based on a multi-population mechanism.
arXiv Detail & Related papers (2024-07-22T12:46:22Z) - Towards Efficient Deployment of Hybrid SNNs on Neuromorphic and Edge AI Hardware [0.493599216374976]
This paper explores the synergistic potential of neuromorphic and edge computing to create a versatile machine learning (ML) system tailored for processing data captured by dynamic vision sensors.
We construct and train hybrid models, blending spiking neural networks (SNNs) and artificial neural networks (ANNs) using PyTorch and Lava frameworks.
arXiv Detail & Related papers (2024-07-11T17:40:39Z) - GPU-RANC: A CUDA Accelerated Simulation Framework for Neuromorphic Architectures [1.3401966602181168]
We introduce the GPU-based implementation of Reconfigurable Architecture for Neuromorphic Computing (RANC)
We demonstrate up to 780 times speedup compared to serial version of the RANC simulator based on a 512 neuromorphic core MNIST inference application.
arXiv Detail & Related papers (2024-04-24T21:08:21Z) - Mechanistic Design and Scaling of Hybrid Architectures [114.3129802943915]
We identify and test new hybrid architectures constructed from a variety of computational primitives.
We experimentally validate the resulting architectures via an extensive compute-optimal and a new state-optimal scaling law analysis.
We find MAD synthetics to correlate with compute-optimal perplexity, enabling accurate evaluation of new architectures.
arXiv Detail & Related papers (2024-03-26T16:33:12Z) - MaGNAS: A Mapping-Aware Graph Neural Architecture Search Framework for
Heterogeneous MPSoC Deployment [8.29394286023338]
We propose a novel unified design-mapping approach for efficient processing of vision GNN workloads on heterogeneous MPSoC platforms.
MaGNAS employs a two-tier evolutionary search to identify optimal GNNs and mapping pairings that yield the best performance trade-offs.
Our experimental results demonstrate that MaGNAS is able to provide 1.57x latency speedup and is 3.38x more energy-efficient for several vision datasets executed on the Xavier MPSoC vs. the GPU-only deployment.
arXiv Detail & Related papers (2023-07-16T14:56:50Z) - Multi-fidelity Hierarchical Neural Processes [79.0284780825048]
Multi-fidelity surrogate modeling reduces the computational cost by fusing different simulation outputs.
We propose Multi-fidelity Hierarchical Neural Processes (MF-HNP), a unified neural latent variable model for multi-fidelity surrogate modeling.
We evaluate MF-HNP on epidemiology and climate modeling tasks, achieving competitive performance in terms of accuracy and uncertainty estimation.
arXiv Detail & Related papers (2022-06-10T04:54:13Z) - A Battle of Network Structures: An Empirical Study of CNN, Transformer,
and MLP [121.35904748477421]
Convolutional neural networks (CNN) are the dominant deep neural network (DNN) architecture for computer vision.
Transformer and multi-layer perceptron (MLP)-based models, such as Vision Transformer and Vision-Mixer, started to lead new trends.
In this paper, we conduct empirical studies on these DNN structures and try to understand their respective pros and cons.
arXiv Detail & Related papers (2021-08-30T06:09:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.