論文の概要: Large Legislative Models: Towards Efficient AI Policymaking in Economic Simulations
- arxiv url: http://arxiv.org/abs/2410.08345v1
- Date: Thu, 10 Oct 2024 20:04:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-31 03:56:20.244415
- Title: Large Legislative Models: Towards Efficient AI Policymaking in Economic Simulations
- Title(参考訳): 大規模立法モデル:経済シミュレーションにおけるAI政策の効率化を目指して
- Authors: Henry Gasztowtt, Benjamin Smith, Vincent Zhu, Qinxun Bai, Edwin Zhang,
- Abstract要約: AIポリシー作成は、大規模にデータを処理する能力を通じて、人間のパフォーマンスを上回る可能性を秘めている。
既存のRLベースの手法では、サンプルの非効率性が示され、意思決定プロセスにニュアンス情報を柔軟に組み込むことができないことにより、さらに制限される。
本稿では,事前学習された大規模言語モデル(LLM)を,サンプル効率のよい政策立案者として利用する新しい手法を提案する。
- 参考スコア(独自算出の注目度): 4.153442346657272
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The improvement of economic policymaking presents an opportunity for broad societal benefit, a notion that has inspired research towards AI-driven policymaking tools. AI policymaking holds the potential to surpass human performance through the ability to process data quickly at scale. However, existing RL-based methods exhibit sample inefficiency, and are further limited by an inability to flexibly incorporate nuanced information into their decision-making processes. Thus, we propose a novel method in which we instead utilize pre-trained Large Language Models (LLMs), as sample-efficient policymakers in socially complex multi-agent reinforcement learning (MARL) scenarios. We demonstrate significant efficiency gains, outperforming existing methods across three environments. Our code is available at https://github.com/hegasz/large-legislative-models.
- Abstract(参考訳): 経済政策作成の改善は、AIによる政策作成ツールの研究にインスピレーションを与えた、幅広い社会的利益の機会を与える。
AIポリシー作成は、大規模にデータを処理する能力を通じて、人間のパフォーマンスを上回る可能性を秘めている。
しかし、既存のRLベースの手法ではサンプルの非効率性が示され、意思決定プロセスにニュアンス情報を柔軟に組み込むことができないため、さらに制限されている。
そこで本稿では,社会的に複雑なマルチエージェント強化学習(MARL)のシナリオにおいて,事前学習された大規模言語モデル(LLM)を,サンプル効率の高い政策立案者として活用する手法を提案する。
3つの環境にまたがる既存手法よりも優れた効率性を示す。
私たちのコードはhttps://github.com/hegasz/large-legislative-modelsで利用可能です。
関連論文リスト
- SRAP-Agent: Simulating and Optimizing Scarce Resource Allocation Policy with LLM-based Agent [45.41401816514924]
本稿では,大規模言語モデル(LLM)を経済シミュレーションに統合する,革新的なフレームワークSRAP-Agentを提案する。
我々は、SRAP-Agentの有効性と有効性を検証するために、広範な政策シミュレーション実験を行う。
論文 参考訳(メタデータ) (2024-10-18T03:43:42Z) - Latent-Predictive Empowerment: Measuring Empowerment without a Simulator [56.53777237504011]
我々は、より実用的な方法でエンパワーメントを計算するアルゴリズムであるLatent-Predictive Empowerment(LPE)を提案する。
LPEは、スキルと国家間の相互情報の原則的な置き換えである目的を最大化することで、大きなスキルセットを学習する。
論文 参考訳(メタデータ) (2024-10-15T00:41:18Z) - On the Modeling Capabilities of Large Language Models for Sequential Decision Making [52.128546842746246]
大規模な事前訓練されたモデルでは、推論や計画タスクのパフォーマンスがますます向上している。
我々は、直接的または間接的に、意思決定ポリシーを作成する能力を評価する。
未知の力学を持つ環境において、合成データを用いた微調整LDMが報酬モデリング能力を大幅に向上させる方法について検討する。
論文 参考訳(メタデータ) (2024-10-08T03:12:57Z) - Efficient Multi-agent Reinforcement Learning by Planning [33.51282615335009]
マルチエージェント強化学習(MARL)アルゴリズムは、大規模意思決定タスクの解決において、目覚ましいブレークスルーを達成している。
既存のMARLアルゴリズムの多くはモデルフリーであり、サンプル効率を制限し、より困難なシナリオでの適用を妨げている。
政策探索のための集中型モデルとモンテカルロ木探索(MCTS)を組み合わせたMAZeroアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-20T04:36:02Z) - Learning Efficient and Fair Policies for Uncertainty-Aware Collaborative Human-Robot Order Picking [11.997524293204368]
協調的な人間ロボットのオーダーピッキングシステムでは、人間のピッカーと自律移動ロボット(AMR)は倉庫内を独立して移動し、ピッカーがアイテムをAMRに積む場所で会う。
本稿では,多目的深層強化学習(DRL)アプローチを提案する。
論文 参考訳(メタデータ) (2024-04-09T11:45:16Z) - Fine-Tuning Language Models with Reward Learning on Policy [68.70065254564642]
人間からのフィードバックからの強化学習(RLHF)は、大きな言語モデル(LLM)を人間の好みに合わせる効果的なアプローチとして現れている。
その人気にもかかわらず、(固定された)報酬モデルが不正確な流通に悩まされることがある。
本稿では、政策サンプルを用いて報酬モデルを洗練し、流通を継続する、教師なしのフレームワークであるポリシーに関する報酬学習(RLP)を提案する。
論文 参考訳(メタデータ) (2024-03-28T10:02:10Z) - How Can LLM Guide RL? A Value-Based Approach [68.55316627400683]
強化学習(Reinforcement Learning, RL)は、将来の行動方針をフィードバックで改善することにより、シーケンシャルな意思決定問題の事実上の標準的実践となった。
大規模言語モデル(LLM)の最近の発展は、言語理解と生成において印象的な能力を示したが、探索と自己改善能力に欠けていた。
我々はLINVITというアルゴリズムを開発し、LLMガイダンスを値ベースRLの正規化因子として組み込んで学習に必要なデータ量を大幅に削減する。
論文 参考訳(メタデータ) (2024-02-25T20:07:13Z) - Towards Efficient Generative Large Language Model Serving: A Survey from
Algorithms to Systems [14.355768064425598]
生成型大規模言語モデル(LLM)が最前線に立ち、データとのインタラクション方法に革命をもたらします。
しかし、これらのモデルをデプロイする際の計算強度とメモリ消費は、効率性の観点から大きな課題を呈している。
本研究は,機械学習システム(MLSys)研究の観点から,効率的なLCM提供手法の必要性について考察する。
論文 参考訳(メタデータ) (2023-12-23T11:57:53Z) - Reparameterized Policy Learning for Multimodal Trajectory Optimization [61.13228961771765]
本研究では,高次元連続行動空間における強化学習のためのパラメータ化政策の課題について検討する。
本稿では,連続RLポリシーを最適軌道の生成モデルとしてモデル化する原理的フレームワークを提案する。
本稿では,マルチモーダルポリシーパラメータ化と学習世界モデルを活用した実用的モデルベースRL手法を提案する。
論文 参考訳(メタデータ) (2023-07-20T09:05:46Z) - Fully Decentralized Model-based Policy Optimization for Networked
Systems [23.46407780093797]
本研究の目的は,モデルベース学習によるマルチエージェント制御のデータ効率の向上である。
エージェントが協力的であり、隣人とのみローカルに通信するネットワークシステムについて検討する。
提案手法では,各エージェントが将来の状態を予測し,通信によって予測をブロードキャストする動的モデルを学習し,その後,モデルロールアウトに基づいてポリシーをトレーニングする。
論文 参考訳(メタデータ) (2022-07-13T23:52:14Z) - Building a Foundation for Data-Driven, Interpretable, and Robust Policy
Design using the AI Economist [67.08543240320756]
AIエコノミストフレームワークは,2段階強化学習とデータ駆動型シミュレーションを用いて,効果的な,柔軟な,解釈可能なポリシー設計を可能にする。
RLを用いて訓練されたログリニア政策は、過去の結果と比較して、公衆衛生と経済の両面から社会福祉を著しく改善することがわかった。
論文 参考訳(メタデータ) (2021-08-06T01:30:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。