論文の概要: Optimal Downsampling for Imbalanced Classification with Generalized Linear Models
- arxiv url: http://arxiv.org/abs/2410.08994v1
- Date: Fri, 11 Oct 2024 17:08:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 20:46:27.871047
- Title: Optimal Downsampling for Imbalanced Classification with Generalized Linear Models
- Title(参考訳): 一般化線形モデルを用いた不均衡分類のための最適ダウンサンプリング
- Authors: Yan Chen, Jose Blanchet, Krzysztof Dembczynski, Laura Fee Nern, Aaron Flores,
- Abstract要約: 一般化線形モデル(GLM)を用いた不均衡分類のための最適ダウンサンプリングについて検討する。
疑似疑似推定器を提案し,その正規性について,不均衡な人口の増加の文脈で検討する。
- 参考スコア(独自算出の注目度): 6.14486033794703
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Downsampling or under-sampling is a technique that is utilized in the context of large and highly imbalanced classification models. We study optimal downsampling for imbalanced classification using generalized linear models (GLMs). We propose a pseudo maximum likelihood estimator and study its asymptotic normality in the context of increasingly imbalanced populations relative to an increasingly large sample size. We provide theoretical guarantees for the introduced estimator. Additionally, we compute the optimal downsampling rate using a criterion that balances statistical accuracy and computational efficiency. Our numerical experiments, conducted on both synthetic and empirical data, further validate our theoretical results, and demonstrate that the introduced estimator outperforms commonly available alternatives.
- Abstract(参考訳): ダウンサンプリング(英: Downsampling)またはアンダーサンプリング(英: Under-Sampling)は、大規模かつ高度に不均衡な分類モデル(英語版)の文脈で利用される技法である。
一般化線形モデル(GLM)を用いた不均衡分類のための最適ダウンサンプリングについて検討した。
擬似最大確率推定器を提案し,その漸近正規性について,標本サイズが大きくなるにつれて不均衡な個体群が増加する状況下で検討する。
導入した推定器の理論的保証を提供する。
さらに,統計的精度と計算効率のバランスをとる基準を用いて,最適なダウンサンプリング率を算出する。
合成データと実験データの両方を用いて数値実験を行い、理論結果のさらなる検証を行い、導入した推定器が一般に利用可能な代替手段より優れていることを示す。
関連論文リスト
- An optimal transport approach for selecting a representative subsample
with application in efficient kernel density estimation [21.632131776088084]
サブサンプリング手法は、観察されたサンプルのサロゲートとしてサブサンプルを選択することを目的としている。
既存のモデルフリーのサブサンプリングメソッドは通常、クラスタリング技術やカーネルのトリックに基づいて構築される。
最適な輸送手法を用いたモデルフリーサブサンプリング手法を提案する。
論文 参考訳(メタデータ) (2022-05-31T05:19:29Z) - Imbalanced Classification via a Tabular Translation GAN [4.864819846886142]
本稿では,多数のサンプルを対応する合成マイノリティ標本にマッピングするために,新たな正規化損失を用いたジェネレーティブ・アドバイサル・ネットワークに基づくモデルを提案する。
提案手法は, 再加重法やオーバーサンプリング法と比較して, 平均精度を向上することを示す。
論文 参考訳(メタデータ) (2022-04-19T06:02:53Z) - Heavy-tailed Streaming Statistical Estimation [58.70341336199497]
ストリーミング$p$のサンプルから重み付き統計推定の課題を考察する。
そこで我々は,傾きの雑音に対して,よりニュアンスな条件下での傾きの傾きの低下を設計し,より詳細な解析を行う。
論文 参考訳(メタデータ) (2021-08-25T21:30:27Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
最小二乗法のような単純な方法でさえ、データが適応的に収集されるときの非正規な振る舞いを示すことができる。
我々は,これらの分布異常を少なくとも2乗推定で補正するオンラインデバイアス推定器のファミリーを提案する。
我々は,マルチアームバンディット,自己回帰時系列推定,探索による能動的学習などの応用を通して,我々の理論の有用性を実証する。
論文 参考訳(メタデータ) (2021-07-05T21:05:11Z) - Maximum sampled conditional likelihood for informative subsampling [4.708378681950648]
サブサンプリングは、計算資源が限られているときに大量のデータセットから情報を抽出する、計算学的に効果的な手法である。
そこで本研究では,サンプルデータに基づく最大条件付き確率推定器(MSCLE)を提案する。
論文 参考訳(メタデータ) (2020-11-11T16:01:17Z) - Why resampling outperforms reweighting for correcting sampling bias with
stochastic gradients [10.860844636412862]
バイアスデータセット上で機械学習モデルをトレーニングするには、バイアスを補うための補正テクニックが必要である。
我々は、目的関数を維持するためにサブグループの比率を再均衡させる2つの一般的な手法、再サンプリングと再重み付けについて検討する。
論文 参考訳(メタデータ) (2020-09-28T16:12:38Z) - Improving Maximum Likelihood Training for Text Generation with Density
Ratio Estimation [51.091890311312085]
本稿では,テキスト生成で遭遇する大規模なサンプル空間において,効率よく安定な自動回帰シーケンス生成モデルのトレーニング手法を提案する。
本手法は,品質と多様性の両面で,最大類似度推定や他の最先端シーケンス生成モデルよりも安定に優れている。
論文 参考訳(メタデータ) (2020-07-12T15:31:24Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
補間分類器間のテストエラーの完全な分布を正確に計算する手法を開発した。
テストエラーは、最悪の補間モデルのテストエラーから大きく逸脱する、小さな典型的な$varepsilon*$に集中する傾向にある。
以上の結果から,統計的学習理論における通常の解析手法は,実際に観測された優れた一般化性能を捉えるのに十分な粒度にはならない可能性が示唆された。
論文 参考訳(メタデータ) (2020-06-22T21:12:31Z) - Detangling robustness in high dimensions: composite versus
model-averaged estimation [11.658462692891355]
ロバスト法は、実際にはユビキタスであるが、正規化推定や高次元の文脈ではまだ完全には理解されていない。
本稿では,これらの設定におけるロバスト性をさらに研究し,予測に焦点を当てたツールボックスを提供する。
論文 参考訳(メタデータ) (2020-06-12T20:40:15Z) - Compressing Large Sample Data for Discriminant Analysis [78.12073412066698]
判別分析フレームワーク内での大きなサンプルサイズに起因する計算問題を考察する。
線形および二次判別分析のためのトレーニングサンプル数を削減するための新しい圧縮手法を提案する。
論文 参考訳(メタデータ) (2020-05-08T05:09:08Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
[1]では、ランダムに投影された線形判別式のアンサンブルを用いてデータセットを分類する。
我々は,計算コストのかかるクロスバリデーション推定器の代替として,誤分類確率の一貫した推定器を開発する。
また、実データと合成データの両方で投影次元を調整するための推定器の使用を実証する。
論文 参考訳(メタデータ) (2020-04-17T12:47:04Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。