Transforming In-Vehicle Network Intrusion Detection: VAE-based Knowledge Distillation Meets Explainable AI
- URL: http://arxiv.org/abs/2410.09043v2
- Date: Tue, 15 Oct 2024 16:29:55 GMT
- Title: Transforming In-Vehicle Network Intrusion Detection: VAE-based Knowledge Distillation Meets Explainable AI
- Authors: Muhammet Anil Yagiz, Pedram MohajerAnsari, Mert D. Pese, Polat Goktas,
- Abstract summary: This paper introduces an advanced intrusion detection system (IDS) called KD-XVAE that uses a Variational Autoencoder (VAE)-based knowledge distillation approach.
Our model significantly reduces complexity, operating with just 1669 parameters and achieving an inference time of 0.3 ms per batch.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the evolving landscape of autonomous vehicles, ensuring robust in-vehicle network (IVN) security is paramount. This paper introduces an advanced intrusion detection system (IDS) called KD-XVAE that uses a Variational Autoencoder (VAE)-based knowledge distillation approach to enhance both performance and efficiency. Our model significantly reduces complexity, operating with just 1669 parameters and achieving an inference time of 0.3 ms per batch, making it highly suitable for resource-constrained automotive environments. Evaluations in the HCRL Car-Hacking dataset demonstrate exceptional capabilities, attaining perfect scores (Recall, Precision, F1 Score of 100%, and FNR of 0%) under multiple attack types, including DoS, Fuzzing, Gear Spoofing, and RPM Spoofing. Comparative analysis on the CICIoV2024 dataset further underscores its superiority over traditional machine learning models, achieving perfect detection metrics. We furthermore integrate Explainable AI (XAI) techniques to ensure transparency in the model's decisions. The VAE compresses the original feature space into a latent space, on which the distilled model is trained. SHAP(SHapley Additive exPlanations) values provide insights into the importance of each latent dimension, mapped back to original features for intuitive understanding. Our paper advances the field by integrating state-of-the-art techniques, addressing critical challenges in the deployment of efficient, trustworthy, and reliable IDSes for autonomous vehicles, ensuring enhanced protection against emerging cyber threats.
Related papers
- XAI-based Feature Ensemble for Enhanced Anomaly Detection in Autonomous Driving Systems [1.3022753212679383]
This paper proposes a novel feature ensemble framework that integrates multiple Explainable AI (XAI) methods.
By fusing top features identified by these XAI methods across six diverse AI models, the framework creates a robust and comprehensive set of features critical for detecting anomalies.
Our technique demonstrates improved accuracy, robustness, and transparency of AI models, contributing to safer and more trustworthy autonomous driving systems.
arXiv Detail & Related papers (2024-10-20T14:34:48Z) - A Hybrid Defense Strategy for Boosting Adversarial Robustness in Vision-Language Models [9.304845676825584]
We propose a novel adversarial training framework that integrates multiple attack strategies and advanced machine learning techniques.
Experiments conducted on real-world datasets, including CIFAR-10 and CIFAR-100, demonstrate that the proposed method significantly enhances model robustness.
arXiv Detail & Related papers (2024-10-18T23:47:46Z) - DiRecNetV2: A Transformer-Enhanced Network for Aerial Disaster Recognition [4.678150356894011]
integration of Unmanned Aerial Vehicles with artificial intelligence (AI) models for aerial imagery processing in disaster assessment requires exceptional accuracy, computational efficiency, and real-time processing capabilities.
Traditionally Convolutional Neural Networks (CNNs) demonstrate efficiency in local feature extraction but are limited by their potential for global context interpretation.
Vision Transformers (ViTs) show promise for improved global context interpretation through the use of attention mechanisms, although they still remain underinvestigated in UAV-based disaster response applications.
arXiv Detail & Related papers (2024-10-17T15:25:13Z) - Open-Set Deepfake Detection: A Parameter-Efficient Adaptation Method with Forgery Style Mixture [58.60915132222421]
We introduce an approach that is both general and parameter-efficient for face forgery detection.
We design a forgery-style mixture formulation that augments the diversity of forgery source domains.
We show that the designed model achieves state-of-the-art generalizability with significantly reduced trainable parameters.
arXiv Detail & Related papers (2024-08-23T01:53:36Z) - AIDE: An Automatic Data Engine for Object Detection in Autonomous Driving [68.73885845181242]
We propose an Automatic Data Engine (AIDE) that automatically identifies issues, efficiently curates data, improves the model through auto-labeling, and verifies the model through generation of diverse scenarios.
We further establish a benchmark for open-world detection on AV datasets to comprehensively evaluate various learning paradigms, demonstrating our method's superior performance at a reduced cost.
arXiv Detail & Related papers (2024-03-26T04:27:56Z) - ASSERT: Automated Safety Scenario Red Teaming for Evaluating the
Robustness of Large Language Models [65.79770974145983]
ASSERT, Automated Safety Scenario Red Teaming, consists of three methods -- semantically aligned augmentation, target bootstrapping, and adversarial knowledge injection.
We partition our prompts into four safety domains for a fine-grained analysis of how the domain affects model performance.
We find statistically significant performance differences of up to 11% in absolute classification accuracy among semantically related scenarios and error rates of up to 19% absolute error in zero-shot adversarial settings.
arXiv Detail & Related papers (2023-10-14T17:10:28Z) - Unsupervised Domain Adaptation for Self-Driving from Past Traversal
Features [69.47588461101925]
We propose a method to adapt 3D object detectors to new driving environments.
Our approach enhances LiDAR-based detection models using spatial quantized historical features.
Experiments on real-world datasets demonstrate significant improvements.
arXiv Detail & Related papers (2023-09-21T15:00:31Z) - AutoFed: Heterogeneity-Aware Federated Multimodal Learning for Robust
Autonomous Driving [15.486799633600423]
AutoFed is a framework to fully exploit multimodal sensory data on autonomous vehicles.
We propose a novel model leveraging pseudo-labeling to avoid mistakenly treating unlabeled objects as the background.
We also propose an autoencoder-based data imputation method to fill missing data modality.
arXiv Detail & Related papers (2023-02-17T01:31:53Z) - CARLA-GeAR: a Dataset Generator for a Systematic Evaluation of
Adversarial Robustness of Vision Models [61.68061613161187]
This paper presents CARLA-GeAR, a tool for the automatic generation of synthetic datasets for evaluating the robustness of neural models against physical adversarial patches.
The tool is built on the CARLA simulator, using its Python API, and allows the generation of datasets for several vision tasks in the context of autonomous driving.
The paper presents an experimental study to evaluate the performance of some defense methods against such attacks, showing how the datasets generated with CARLA-GeAR might be used in future work as a benchmark for adversarial defense in the real world.
arXiv Detail & Related papers (2022-06-09T09:17:38Z) - Improving Variational Autoencoder based Out-of-Distribution Detection
for Embedded Real-time Applications [2.9327503320877457]
Out-of-distribution (OD) detection is an emerging approach to address the challenge of detecting out-of-distribution in real-time.
In this paper, we show how we can robustly detect hazardous motion around autonomous driving agents.
Our methods significantly improve detection capabilities of OoD factors to unique driving scenarios, 42% better than state-of-the-art approaches.
Our model also generalized near-perfectly, 97% better than the state-of-the-art across the real-world and simulation driving data sets experimented.
arXiv Detail & Related papers (2021-07-25T07:52:53Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
We propose an effective training data generation process by fitting a 3D car model with dynamic parts to vehicles in real images.
Our approach is fully automatic without any human interaction.
We present a multi-task network for VUS parsing and a multi-stream network for VHI parsing.
arXiv Detail & Related papers (2020-12-15T03:03:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.