論文の概要: On the Hypomonotone Class of Variational Inequalities
- arxiv url: http://arxiv.org/abs/2410.09182v1
- Date: Fri, 11 Oct 2024 18:35:48 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 15:53:25.728471
- Title: On the Hypomonotone Class of Variational Inequalities
- Title(参考訳): 変分不等式の低モノトン類について
- Authors: Khaled Alomar, Tatjana Chavdarova,
- Abstract要約: 本研究では,低単調な演算子に適用した場合の過次アルゴリズムの挙動について検討する。
次数次アルゴリズムが収束しない条件を特定するための評価定理を提供する。
- 参考スコア(独自算出の注目度): 4.204990010424083
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: This paper studies the behavior of the extragradient algorithm when applied to hypomonotone operators, a class of problems that extends beyond the classical monotone setting. While the extragradient method is widely known for its efficacy in solving variational inequalities with monotone and Lipschitz continuous operators, we demonstrate that its convergence is not guaranteed in the hypomonotone setting. We provide a characterization theorem that identifies the conditions under which the extragradient algorithm fails to converge. Our results highlight the necessity of stronger assumptions to guarantee convergence of extragradient and to further develop the existing VI methods for broader problems.
- Abstract(参考訳): 本稿では,古典的な単調設定を超えた問題群である低単調演算子に適用した場合の過次アルゴリズムの挙動について検討する。
過次法はモノトンおよびリプシッツ連続作用素による変分不等式を解く効果で広く知られているが、低モノトン設定ではその収束が保証されないことを示す。
次数次アルゴリズムが収束しない条件を特定するための評価定理を提供する。
以上の結果から, 外部段階の収束を保証し, より広範な問題に対する既存のVI法をさらに発展させる上で, より強い仮定の必要性が浮き彫りにされた。
関連論文リスト
- An Augmented Lagrangian Approach to Conically Constrained Non-monotone
Variational Inequality Problems [8.609626012634559]
ALAVIと呼ばれる拡張ラグランジアン原始双対法を導入し、一般に制約されたVIモデルを解く。
計量準正則性条件の下では、VI モデルが非単調であっても、ALAVI の局所収束速度は線形となる。
論文 参考訳(メタデータ) (2023-06-02T00:33:15Z) - First Order Methods with Markovian Noise: from Acceleration to Variational Inequalities [91.46841922915418]
本稿では,一階変分法の理論解析のための統一的アプローチを提案する。
提案手法は非線形勾配問題とモンテカルロの強い問題の両方をカバーする。
凸法最適化問題の場合、オラクルに強く一致するような境界を与える。
論文 参考訳(メタデータ) (2023-05-25T11:11:31Z) - Single-Call Stochastic Extragradient Methods for Structured Non-monotone
Variational Inequalities: Improved Analysis under Weaker Conditions [21.681130192954583]
シングルコール・エクストラグラディエント法は、大規模なmin-max最適化問題を解くための最も効率的なアルゴリズムの1つである。
i)準強単調問題(強単調問題の一般化)と(ii)弱ミンティ変分不等式(単調とミニティVIPの一般化)の2つのクラスに対して収束保証を提供する。
我々の収束分析は、重要なサンプリングと様々なミニバッチ戦略を特別な場合として含む任意のサンプリングパラダイムの下で成り立っている。
論文 参考訳(メタデータ) (2023-02-27T18:53:28Z) - High-Probability Bounds for Stochastic Optimization and Variational
Inequalities: the Case of Unbounded Variance [59.211456992422136]
制約の少ない仮定の下で高確率収束結果のアルゴリズムを提案する。
これらの結果は、標準機能クラスに適合しない問題を最適化するために検討された手法の使用を正当化する。
論文 参考訳(メタデータ) (2023-02-02T10:37:23Z) - Distributed Stochastic Optimization under a General Variance Condition [13.911633636387059]
分散最適化は最近、大規模な機械学習問題の解決に効果があるとして、大きな注目を集めている。
我々は、古典的フェデレーション平均化(Avg)を再考し、滑らかな非対象関数に対して、緩やかな分散しか持たない収束結果を確立する。
ほぼ1つの定常収束点も勾配条件の下で成立する。
論文 参考訳(メタデータ) (2023-01-30T05:48:09Z) - A Primal-Dual Approach to Solving Variational Inequalities with General Constraints [54.62996442406718]
Yang et al. (2023) は最近、一般的な変分不等式を解決するために一階勾配法を使う方法を示した。
この方法の収束性を証明し、演算子が$L$-Lipschitz と monotone である場合、この手法の最後の繰り返しのギャップ関数が$O(frac1sqrtK)$で減少することを示す。
論文 参考訳(メタデータ) (2022-10-27T17:59:09Z) - On the Importance of Gradient Norm in PAC-Bayesian Bounds [92.82627080794491]
対数ソボレフ不等式の縮約性を利用する新しい一般化法を提案する。
我々は、この新たな損失段階的ノルム項が異なるニューラルネットワークに与える影響を実証的に分析する。
論文 参考訳(メタデータ) (2022-10-12T12:49:20Z) - Clipped Stochastic Methods for Variational Inequalities with
Heavy-Tailed Noise [64.85879194013407]
単調なVIPと非単調なVIPの解法における信頼度に対数的依存を持つ最初の高確率結果が証明された。
この結果は光尾の場合で最もよく知られたものと一致し,非単調な構造問題に新鮮である。
さらに,多くの実用的な定式化の勾配雑音が重く,クリッピングによりSEG/SGDAの性能が向上することを示す。
論文 参考訳(メタデータ) (2022-06-02T15:21:55Z) - Tight Last-Iterate Convergence of the Extragradient Method for
Constrained Monotone Variational Inequalities [4.6193503399184275]
制約付きモノトンおよびリプシッツの変分不等式について, 過次法の最終点収束率を示す。
我々は,2乗法プログラミングのパワーと,指数関数法更新規則の低次元性を組み合わせた新しい手法を開発した。
論文 参考訳(メタデータ) (2022-04-20T05:12:11Z) - Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth
Games: Convergence Analysis under Expected Co-coercivity [49.66890309455787]
本稿では,SGDA と SCO の最終的な収束保証として,期待されるコヒーレンシティ条件を導入し,その利点を説明する。
定常的なステップサイズを用いた場合、両手法の線形収束性を解の近傍に証明する。
我々の収束保証は任意のサンプリングパラダイムの下で保たれ、ミニバッチの複雑さに関する洞察を与える。
論文 参考訳(メタデータ) (2021-06-30T18:32:46Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。