論文の概要: Tackling Coherent Noise in Quantum Computing via Cross-Layer Compiler Optimization
- arxiv url: http://arxiv.org/abs/2410.09664v1
- Date: Sat, 12 Oct 2024 22:39:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 08:56:21.495683
- Title: Tackling Coherent Noise in Quantum Computing via Cross-Layer Compiler Optimization
- Title(参考訳): クロスレイヤコンパイラ最適化による量子コンピューティングにおけるコヒーレントノイズの処理
- Authors: Xiangyu Ren, Junjie Wan, Zhiding Liang, Antonio Barbalace,
- Abstract要約: 量子コンピューティングハードウェアは、実行された量子プログラムの結果の品質を損なう量子ノイズに影響を受ける。
パラメータのドリフトや誤校正によるコヒーレントエラーは依然として重要な問題である。
本研究は、コヒーレントエラー軽減のための層間アプローチを提案する。
- 参考スコア(独自算出の注目度): 1.6436891312063917
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum computing hardware is affected by quantum noise that undermine the quality of results of an executed quantum program. Amongst other quantum noises, coherent error that caused by parameter drifting and miscalibration, remains critical. While coherent error mitigation has been studied before, studies focused either on gate-level or pulse-level -- missing cross-level optimization opportunities; And most of them only target single-qubit gates -- while multi-qubit gates are also used in practice. To address above limitations, this work proposes a cross-layer approach for coherent error mitigation that considers program-level, gate-level, and pulse-level compiler optimizations, by leveraging the hidden inverse theory, and exploiting the structure inside different quantum programs, while also considering multi-qubit gates. We implemented our approach as compiler optimization passes, and integrated into IBM Qiskit framework. We tested our technique on real quantum computer (IBM-Brisbane), and demonstrated up to 92% fidelity improvements (45% on average), on several benchmarks.
- Abstract(参考訳): 量子コンピューティングハードウェアは、実行された量子プログラムの結果の品質を損なう量子ノイズに影響を受ける。
その他の量子ノイズの中で、パラメータのドリフトと誤校正に起因するコヒーレント誤差は依然として重要なものである。
コヒーレントなエラー軽減は以前にも研究されてきたが、ゲートレベルかパルスレベル、すなわちクロスレベル最適化の機会の欠如に焦点を当てた研究が注目されている。
上記の制限に対処するため,プログラムレベル,ゲートレベル,パルスレベルのコンパイラ最適化を考慮したコヒーレントエラー軽減手法を提案する。
コンパイラ最適化パスとしてアプローチを実装し,IBM Qiskitフレームワークに統合した。
我々は実量子コンピュータ(IBM-Brisbane)でテストを行い、いくつかのベンチマークで92%の忠実度改善(平均45%)を実証した。
関連論文リスト
- Noise-Aware Distributed Quantum Approximate Optimization Algorithm on Near-term Quantum Hardware [2.753858051267023]
本稿では,短期量子ハードウェア上での動作に適した雑音対応分散量子近似最適化アルゴリズム(QAOA)を提案する。
我々は、現在のノイズ中間量子(NISQ)デバイスの限界に対処し、量子ビット数の制限と高いエラー率によって妨げられている。
論文 参考訳(メタデータ) (2024-07-24T14:50:01Z) - Qubit-efficient quantum combinatorial optimization solver [0.0]
そこで我々は,候補ビット解をより少ない量子ビットの絡み合った波動関数にマッピングすることで,制限を克服する量子ビット効率のアルゴリズムを開発した。
このアプローチは、短期的な中間スケールと将来のフォールトトレラントな小規模量子デバイスに有効である。
論文 参考訳(メタデータ) (2024-07-22T11:02:13Z) - A Fast and Adaptable Algorithm for Optimal Multi-Qubit Pathfinding in Quantum Circuit Compilation [0.0]
この研究は、量子回路のコンパイルマッピング問題における臨界サブルーチンとして、マルチキュービットパスフィンディングに焦点を当てている。
本稿では,回路SWAPゲート深さに対して量子ハードウェア上で量子ビットを最適にナビゲートする二進整数線形計画法を用いてモデル化したアルゴリズムを提案する。
我々は、様々な量子ハードウェアレイアウトのアルゴリズムをベンチマークし、計算ランタイム、解SWAP深さ、累積SWAPゲート誤差率などの特性を評価した。
論文 参考訳(メタデータ) (2024-05-29T05:59:15Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEAはノイズ適応型量子回路のインタイムスパース探索である。
1)トレーニング中の暗黙の回路容量と(2)雑音の頑健さの2つの主要な目標を達成することを目的としている。
提案手法は, 量子ゲート数の半減と回路実行の2倍の時間節約で, 最先端の計算結果を確立する。
論文 参考訳(メタデータ) (2024-01-10T22:33:00Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
本稿では,限られた情報伝達と保守的絡み合い生成を含む短期分散量子コンピューティングを提案する。
我々はこれらの概念に基づいて、変分量子アルゴリズムの断片化事前学習のための近似回路切断手法を作成する。
論文 参考訳(メタデータ) (2023-09-11T18:00:00Z) - Hybrid Gate-Pulse Model for Variational Quantum Algorithms [33.73469431747376]
現在の量子プログラムは主にゲートレベルでコンパイルされ、量子回路は量子ゲートで構成されている。
パルスレベルの最適化は、回路長の利点から研究者から注目を集めている。
これらの問題を緩和できるハイブリッドゲートパルスモデルを提案する。
論文 参考訳(メタデータ) (2022-12-01T17:06:35Z) - Hardware-Conscious Optimization of the Quantum Toffoli Gate [11.897854272643634]
この論文は、この抽象レベルで量子回路を最適化するための解析的および数値的アプローチを拡張している。
本稿では,解析的ネイティブゲートレベルの最適化と数値最適化を併用する手法を提案する。
最適化されたToffoliゲート実装は、標準実装と比較して18%の非忠実性低下を示す。
論文 参考訳(メタデータ) (2022-09-06T17:29:22Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
本稿では,最適化問題における短期量子優位性の提案に着想を得た高忠実度ゲートセットを提案する。
3つのトランペット四重項のコヒーレントな多レベル制御を編成することにより、自然な3量子ビット計算ベースで作用する決定論的連続角量子位相ゲートの族を合成する。
論文 参考訳(メタデータ) (2021-08-03T17:49:09Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
本稿では、QAS(Quantum Architecture Search)と呼ばれるリソースと実行時の効率的なスキームを提案する。
QASは、よりノイズの多い量子ゲートを追加することで得られる利点と副作用のバランスをとるために、自動的にほぼ最適アンサッツを求める。
数値シミュレータと実量子ハードウェアの両方に、IBMクラウドを介してQASを実装し、データ分類と量子化学タスクを実現する。
論文 参考訳(メタデータ) (2020-10-20T12:06:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。