論文の概要: EG-SpikeFormer: Eye-Gaze Guided Transformer on Spiking Neural Networks for Medical Image Analysis
- arxiv url: http://arxiv.org/abs/2410.09674v1
- Date: Sat, 12 Oct 2024 23:54:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 08:46:35.275783
- Title: EG-SpikeFormer: Eye-Gaze Guided Transformer on Spiking Neural Networks for Medical Image Analysis
- Title(参考訳): EG-SpikeFormer:医用画像解析のためのスパイキングニューラルネットワーク用アイゲイズガイド変換器
- Authors: Yi Pan, Hanqi Jiang, Junhao Chen, Yiwei Li, Huaqin Zhao, Yifan Zhou, Peng Shu, Zihao Wu, Zhengliang Liu, Dajiang Zhu, Xiang Li, Yohannes Abate, Tianming Liu,
- Abstract要約: 眼球運動データを統合する臨床タスク用に設計されたSNNアーキテクチャであるEG-SpikeFormerを紹介する。
このアプローチは、従来のモデルでよく見られるショートカット学習の問題に効果的に対処する。
我々のEG-SpikeFormerは,医用画像分類作業におけるエネルギー効率と性能を向上するだけでなく,臨床関連性も向上する。
- 参考スコア(独自算出の注目度): 32.59232529143777
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neuromorphic computing has emerged as a promising energy-efficient alternative to traditional artificial intelligence, predominantly utilizing spiking neural networks (SNNs) implemented on neuromorphic hardware. Significant advancements have been made in SNN-based convolutional neural networks (CNNs) and Transformer architectures. However, their applications in the medical imaging domain remain underexplored. In this study, we introduce EG-SpikeFormer, an SNN architecture designed for clinical tasks that integrates eye-gaze data to guide the model's focus on diagnostically relevant regions in medical images. This approach effectively addresses shortcut learning issues commonly observed in conventional models, especially in scenarios with limited clinical data and high demands for model reliability, generalizability, and transparency. Our EG-SpikeFormer not only demonstrates superior energy efficiency and performance in medical image classification tasks but also enhances clinical relevance. By incorporating eye-gaze data, the model improves interpretability and generalization, opening new directions for the application of neuromorphic computing in healthcare.
- Abstract(参考訳): ニューロモルフィックコンピューティングは、ニューロモルフィックハードウェアに実装されたスパイキングニューラルネットワーク(SNN)を主に利用して、従来の人工知能に代わる有望なエネルギー効率の代替として登場した。
SNNベースの畳み込みニューラルネットワーク(CNN)とTransformerアーキテクチャにおいて、重要な進歩がなされている。
しかし、医療画像領域におけるそれらの応用はいまだ未発見のままである。
本研究では,医用画像の診断関連領域に焦点を合わせるために眼球データを統合するSNNアーキテクチャであるEG-SpikeFormerを紹介する。
このアプローチは、特に臨床データに制限があり、モデルの信頼性、一般化可能性、透明性に対する高い要求のあるシナリオにおいて、従来のモデルでよく見られるショートカット学習の問題に効果的に対処する。
我々のEG-SpikeFormerは,医用画像分類作業におけるエネルギー効率と性能を向上するだけでなく,臨床関連性も向上する。
視線データを取り入れることで、解釈可能性と一般化が向上し、医療におけるニューロモルフィックコンピューティングの適用に向けた新たな方向性が開かれる。
関連論文リスト
- Retinal Vessel Segmentation via Neuron Programming [17.609169389489633]
本稿では,神経レベルでのネットワークの表現能力を高めるため,ニューラルネット設計における新しいアプローチであるニューラルネットプログラミングについて紹介する。
総合的な実験により、ニューロンプログラミングは網膜の血液分画において競合的な性能を発揮することが検証された。
論文 参考訳(メタデータ) (2024-11-17T16:03:30Z) - Adversarial Neural Networks in Medical Imaging Advancements and Challenges in Semantic Segmentation [6.88255677115486]
人工知能(AI)の最近の進歩は、医療画像のパラダイムシフトを引き起こしている。
本稿では,脳画像のセマンティックセグメンテーションへの深層学習(AIの主分野)の統合を体系的に検討する。
敵対的ニューラルネットワークは、自動化するだけでなく、セマンティックセグメンテーションプロセスを洗練する、新しいAIアプローチである。
論文 参考訳(メタデータ) (2024-10-17T00:05:05Z) - Stochastic Spiking Neural Networks with First-to-Spike Coding [7.955633422160267]
スパイキングニューラルネットワーク (SNN) は、その生物の楽観性とエネルギー効率で知られている。
本研究では,SNNアーキテクチャにおける新しい計算手法と情報符号化方式の融合について検討する。
提案手法のトレードオフを,精度,推論遅延,スパイク空間性,エネルギー消費,データセットの観点から検討する。
論文 参考訳(メタデータ) (2024-04-26T22:52:23Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - NiSNN-A: Non-iterative Spiking Neural Networks with Attention with
Application to Motor Imagery EEG Classification [7.430549997480745]
運動画像は脳波(EEG)研究において重要なカテゴリである。
従来のディープラーニングアルゴリズムは、重要な計算要求と高エネルギー利用によって特徴付けられる。
スパイクニューラルネットワーク(SNN)は、有望なエネルギー効率のソリューションとして出現する。
論文 参考訳(メタデータ) (2023-12-09T19:13:15Z) - A Hybrid Neural Coding Approach for Pattern Recognition with Spiking
Neural Networks [53.31941519245432]
脳にインスパイアされたスパイクニューラルネットワーク(SNN)は、パターン認識タスクを解く上で有望な能力を示している。
これらのSNNは、情報表現に一様神経コーディングを利用する同質ニューロンに基づいている。
本研究では、SNNアーキテクチャは異種符号化方式を組み込むよう、均質に設計されるべきである、と論じる。
論文 参考訳(メタデータ) (2023-05-26T02:52:12Z) - Transferability of coVariance Neural Networks and Application to
Interpretable Brain Age Prediction using Anatomical Features [119.45320143101381]
グラフ畳み込みネットワーク(GCN)は、トポロジー駆動のグラフ畳み込み演算を利用して、推論タスクのためにグラフをまたいだ情報を結合する。
我々は、共分散行列をグラフとして、共分散ニューラルネットワーク(VNN)の形でGCNを研究した。
VNNは、GCNからスケールフリーなデータ処理アーキテクチャを継承し、ここでは、共分散行列が極限オブジェクトに収束するデータセットに対して、VNNが性能の転送可能性を示すことを示す。
論文 参考訳(メタデータ) (2023-05-02T22:15:54Z) - Learning Task-Aware Effective Brain Connectivity for fMRI Analysis with
Graph Neural Networks [28.460737693330245]
我々は、fMRI解析のためのアンダーラインTask-aware UnderlineBrain接続アンダーラインDAGに基づくエンドツーエンドフレームワークTBDSを提案する。
TBDSの鍵となるコンポーネントは、DAG学習アプローチを採用して、生の時系列をタスク対応の脳結合性に変換する脳ネットワークジェネレータである。
2つのfMRIデータセットに関する総合的な実験は、TBDSの有効性を示す。
論文 参考訳(メタデータ) (2022-11-01T03:59:54Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
本稿では,疫病予測のための新しい物理インフォームドニューラルネットワークEINNを紹介する。
メカニスティックモデルによって提供される理論的柔軟性と、AIモデルによって提供されるデータ駆動表現性の両方を活用する方法について検討する。
論文 参考訳(メタデータ) (2022-02-21T18:59:03Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
本稿では,医用画像分類分野におけるディープニューラルネットワークの一般化能力向上のための,シンプルだが効果的なアプローチを提案する。
医用画像の領域変数がある程度コンパクトであることに感銘を受けて,変分符号化による代表的特徴空間の学習を提案する。
論文 参考訳(メタデータ) (2020-09-27T12:30:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。