論文の概要: Neural Solver Selection for Combinatorial Optimization
- arxiv url: http://arxiv.org/abs/2410.09693v1
- Date: Sun, 13 Oct 2024 02:05:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 08:36:49.320591
- Title: Neural Solver Selection for Combinatorial Optimization
- Title(参考訳): 組合せ最適化のためのニューラルソルバー選択
- Authors: Chengrui Gao, Haopu Shang, Ke Xue, Chao Qian,
- Abstract要約: 本稿では,特徴抽出,選択モデル,選択戦略を含むニューラルソルバのコーディネートを行うための,最初の汎用フレームワークを提案する。
提案するフレームワークは,インスタンスを効果的に分散し,結果として得られる複合解法により性能が大幅に向上することを示す。
- 参考スコア(独自算出の注目度): 23.449310200885893
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Machine learning has increasingly been employed to solve NP-hard combinatorial optimization problems, resulting in the emergence of neural solvers that demonstrate remarkable performance, even with minimal domain-specific knowledge. To date, the community has created numerous open-source neural solvers with distinct motivations and inductive biases. While considerable efforts are devoted to designing powerful single solvers, our findings reveal that existing solvers typically demonstrate complementary performance across different problem instances. This suggests that significant improvements could be achieved through effective coordination of neural solvers at the instance level. In this work, we propose the first general framework to coordinate the neural solvers, which involves feature extraction, selection model, and selection strategy, aiming to allocate each instance to the most suitable solvers. To instantiate, we collect several typical neural solvers with state-of-the-art performance as alternatives, and explore various methods for each component of the framework. We evaluated our framework on two extensively studied combinatorial optimization problems, Traveling Salesman Problem (TSP) and Capacitated Vehicle Routing Problem (CVRP). Experimental results show that the proposed framework can effectively distribute instances and the resulting composite solver can achieve significantly better performance (e.g., reduce the optimality gap by 0.88\% on TSPLIB and 0.71\% on CVRPLIB) than the best individual neural solver with little extra time cost.
- Abstract(参考訳): NPハードな組合せ最適化問題を解くために機械学習がますます採用され、最小限のドメイン固有知識を持つ場合でも、顕著なパフォーマンスを示すニューラルソルバが出現する。
これまで、コミュニティは、明確なモチベーションと帰納的バイアスを持つ、多数のオープンソースのニューラルソルバを作成してきた。
強力な単一解法の設計に多大な努力が注がれているが、既存の解法は典型的に異なる問題インスタンスにまたがって相補的な性能を示す。
これは、ニューラルネットワークをインスタンスレベルで効果的に調整することで、大幅な改善が達成できることを示唆している。
本研究では, 特徴抽出, 選択モデル, 選択戦略を含むニューラルソルバのコーディネートを行うための最初の一般フレームワークを提案する。
そこで我々は,その代替手段として最先端性能の典型的なニューラルソルバをいくつか収集し,フレームワークの各コンポーネントに対する様々な手法を探索する。
本研究では,TSP(Traveing Salesman Problem)とCVRP(Capacitated Vehicle Routing Problem)の2つの組み合わせ最適化問題について検討した。
実験結果から,提案フレームワークは効率よくインスタンスを分散し,結果として得られる合成解法により,最適性ギャップをTSPLIBで0.88 %,CVRPLIBで0.71 %削減できることがわかった。
関連論文リスト
- Decision-focused Graph Neural Networks for Combinatorial Optimization [62.34623670845006]
最適化問題に取り組むための新たな戦略は、従来のアルゴリズムに代わるグラフニューラルネットワーク(GNN)の採用である。
GNNや従来のアルゴリズムソルバがCOの領域で人気が高まっているにもかかわらず、それらの統合利用とエンドツーエンドフレームワークにおけるそれらの相関について限定的な研究がなされている。
我々は、GNNを利用してCO問題に補助的なサポートで対処する決定に焦点を当てたフレームワークを導入する。
論文 参考訳(メタデータ) (2024-06-05T22:52:27Z) - Instance-Conditioned Adaptation for Large-scale Generalization of Neural Combinatorial Optimization [15.842155380912002]
本研究は,ニューラル最適化の大規模一般化のための新しいインスタンス・コンディション適応モデル(ICAM)を提案する。
特に,NCOモデルのための強力なインスタンス条件付きルーティング適応モジュールを設計する。
我々は,ラベル付き最適解を使わずに,モデルがクロススケールな特徴を学習することのできる,効率的な3段階強化学習ベーストレーニング手法を開発した。
論文 参考訳(メタデータ) (2024-05-03T08:00:19Z) - Self-Improved Learning for Scalable Neural Combinatorial Optimization [15.842155380912002]
本研究は、ニューラルネットワーク最適化のスケーラビリティを向上させるための新しい自己改善学習(SIL)手法を提案する。
我々は,ラベル付きデータを使わずに大規模問題インスタンス上での直接モデルトレーニングを可能にする,効率的な自己改善機構を開発した。
さらに,計算モデルに対する線形注意複雑化機構を設計し,オーバヘッドの少ない大規模問題インスタンスを効率的に処理する。
論文 参考訳(メタデータ) (2024-03-28T16:46:53Z) - A Multi-Head Ensemble Multi-Task Learning Approach for Dynamical
Computation Offloading [62.34538208323411]
共有バックボーンと複数の予測ヘッド(PH)を組み合わせたマルチヘッドマルチタスク学習(MEMTL)手法を提案する。
MEMTLは、追加のトレーニングデータを必要とせず、推測精度と平均平方誤差の両方でベンチマーク手法より優れている。
論文 参考訳(メタデータ) (2023-09-02T11:01:16Z) - DIFUSCO: Graph-based Diffusion Solvers for Combinatorial Optimization [51.517956081644186]
グラフベースの拡散フレームワークであるDIFUSCOを導入する。
本フレームワークは, NPC問題を離散0, 1ベクトル最適化問題とみなす。
MIS問題に対して、DIFUSCOは、挑戦的なSATLIBベンチマークにおいて、以前の最先端のニューラルソルバよりも優れている。
論文 参考訳(メタデータ) (2023-02-16T11:13:36Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
ディープネットワークにおけるコンポーネントとしての制約付き最適化モデルの統合は、多くの専門的な学習タスクに有望な進歩をもたらした。
1つの典型的な戦略はアルゴリズムのアンローリングであり、これは反復解法の操作による自動微分に依存している。
本稿では,非ロール最適化の後方通過に関する理論的知見を提供し,効率よく解けるバックプロパゲーション解析モデルを生成するシステムに繋がる。
論文 参考訳(メタデータ) (2023-01-28T01:50:42Z) - Neural Combinatorial Optimization: a New Player in the Field [69.23334811890919]
本稿では,ニューラルネットワークに基づくアルゴリズムの古典的最適化フレームワークへの導入に関する批判的分析を行う。
性能, 転送可能性, 計算コスト, 大規模インスタンスなど, これらのアルゴリズムの基本的側面を分析するために, 総合的研究を行った。
論文 参考訳(メタデータ) (2022-05-03T07:54:56Z) - A Differentiable Approach to Combinatorial Optimization using Dataless
Neural Networks [20.170140039052455]
我々は、ソリューションを生成するニューラルネットワークのトレーニングにデータを必要としないという、根本的に異なるアプローチを提案する。
特に、最適化問題をニューラルネットワークに還元し、データレストレーニングスキームを用いて、それらのパラメータが関心の構造をもたらすように、ネットワークのパラメータを洗練する。
論文 参考訳(メタデータ) (2022-03-15T19:21:31Z) - Acceleration techniques for optimization over trained neural network
ensembles [1.0323063834827415]
本研究では, 線形単位活性化の補正されたフィードフォワードニューラルネットワークを用いて, 目的関数をモデル化する最適化問題について検討する。
本稿では,1つのニューラルネットワークを最適化するために,既存のBig-M$の定式化をベースとした混合整数線形プログラムを提案する。
論文 参考訳(メタデータ) (2021-12-13T20:50:54Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
本稿では,自由空間光学(FSO)通信におけるチャネルフェージング効果の緩和のための資源配分の一般的な問題について検討する。
本フレームワークでは,FSO資源割り当て問題を解決する2つのアルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-07-27T17:38:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。