論文の概要: Expanding Search Space with Diverse Prompting Agents: An Efficient Sampling Approach for LLM Mathematical Reasoning
- arxiv url: http://arxiv.org/abs/2410.09780v1
- Date: Sun, 13 Oct 2024 08:49:22 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 04:52:52.369430
- Title: Expanding Search Space with Diverse Prompting Agents: An Efficient Sampling Approach for LLM Mathematical Reasoning
- Title(参考訳): 逆プロンプティングエージェントによる探索空間の拡大: LLM数学的推論のための効率的なサンプリング手法
- Authors: Gisang Lee, Sangwoo Park, Junyoung Park, Andrew Chung, Sieun Park, Yoonah Park, Byungju Kim, Min-gyu Cho,
- Abstract要約: 大規模言語モデル(LLM)は、数学的推論を含む多くの複雑なタスクにおいて顕著な機能を示した。
従来のアプローチは、単一プロンプト方式における自己整合性の確保に大きく依存しており、多様な問題解決戦略の探索を制限している。
本研究では、数学的推論の領域内で異なるプロンプト法を実験的に解析することにより、これらの制限に対処する。
- 参考スコア(独自算出の注目度): 8.202465083911097
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have exhibited remarkable capabilities in many complex tasks including mathematical reasoning. However, traditional approaches heavily rely on ensuring self-consistency within single prompting method, which limits the exploration of diverse problem-solving strategies. This study addresses these limitations by performing an experimental analysis of distinct prompting methods within the domain of mathematical reasoning. Our findings demonstrate that each method explores a distinct search space, and this differentiation becomes more evident with increasing problem complexity. To leverage this phenomenon, we applied efficient sampling process that uniformly combines samples from these diverse methods, which not only expands the maximum search space but achieves higher performance with fewer runs compared to single methods. Especially, within the subset of difficult questions of MATH dataset named MATH-hard, The maximum search space was achieved while utilizing approximately 43% fewer runs than single methods on average. These findings highlight the importance of integrating diverse problem-solving strategies to enhance the reasoning abilities of LLMs.
- Abstract(参考訳): 大規模言語モデル(LLM)は、数学的推論を含む多くの複雑なタスクにおいて顕著な機能を示した。
しかし、従来のアプローチは、単一プロンプト方式における自己整合性の確保に大きく依存しており、多様な問題解決戦略の探索を制限している。
本研究では、数学的推論の領域内で異なるプロンプト法を実験的に解析することにより、これらの制限に対処する。
以上の結果から,各手法が異なる探索空間を探索し,この問題の複雑性が増大するにつれて,この微分がより明確になることが示された。
この現象を活用するために,これらの多種多様な手法のサンプルを均一に組み合わせた効率的なサンプリングプロセスを適用した。
特にMATH-hardと命名されたMATHデータセットの難解な質問のサブセットにおいて、最大検索スペースは平均して1つのメソッドよりも約43%少ない実行量で達成された。
これらの知見は, LLMの推論能力を高めるために, 多様な問題解決戦略を統合することの重要性を強調した。
関連論文リスト
- EVOLvE: Evaluating and Optimizing LLMs For Exploration [76.66831821738927]
大規模言語モデル(LLM)は、不確実性の下で最適な意思決定を必要とするシナリオにおいて、未調査のままである。
多くのアプリケーションに関係のあるステートレス強化学習環境である,帯域幅を最適に決定できる LLM の (in) 能力の測定を行う。
最適な探索アルゴリズムの存在を動機として,このアルゴリズム知識をLLMに統合する効率的な方法を提案する。
論文 参考訳(メタデータ) (2024-10-08T17:54:03Z) - Optimization by Parallel Quasi-Quantum Annealing with Gradient-Based Sampling [0.0]
本研究では、連続緩和による勾配に基づく更新と準量子アナリング(QQA)を組み合わせた別のアプローチを提案する。
数値実験により,本手法はiSCOと学習型解法に匹敵する性能を有する汎用解法であることが示された。
論文 参考訳(メタデータ) (2024-09-02T12:55:27Z) - MindStar: Enhancing Math Reasoning in Pre-trained LLMs at Inference Time [51.5039731721706]
MindStarは、大言語モデルの純粋に推論に基づく探索手法である。
推論タスクを探索問題として定式化し、最適な推論経路を特定するための2つの探索アイデアを提案する。
Llama-2-13BやMistral-7Bのようなオープンソースモデルの推論能力を大幅に向上させ、GPT-3.5やGrok-1に匹敵する性能を実現している。
論文 参考訳(メタデータ) (2024-05-25T15:07:33Z) - Robust Analysis of Multi-Task Learning Efficiency: New Benchmarks on Light-Weighed Backbones and Effective Measurement of Multi-Task Learning Challenges by Feature Disentanglement [69.51496713076253]
本稿では,既存のMTL手法の効率性に焦点をあてる。
バックボーンを小さくしたメソッドの大規模な実験と,MetaGraspNetデータセットを新しいテストグラウンドとして実施する。
また,MTLにおける課題の新規かつ効率的な識別子として,特徴分散尺度を提案する。
論文 参考訳(メタデータ) (2024-02-05T22:15:55Z) - PathFinder: Guided Search over Multi-Step Reasoning Paths [80.56102301441899]
木探索に基づく推論経路生成手法であるPathFinderを提案する。
動的デコードの統合により、多様な分岐とマルチホップ推論を強化する。
我々のモデルは、大きな分岐因子を持つビームサーチに類似した複雑さを反映して、よく、長く、目に見えない推論連鎖を一般化する。
論文 参考訳(メタデータ) (2023-12-08T17:05:47Z) - Optimizing Solution-Samplers for Combinatorial Problems: The Landscape
of Policy-Gradient Methods [52.0617030129699]
本稿では,DeepMatching NetworksとReinforcement Learningメソッドの有効性を解析するための新しい理論フレームワークを提案する。
我々の主な貢献は、Max- and Min-Cut、Max-$k$-Bipartite-Bi、Maximum-Weight-Bipartite-Bi、Traveing Salesman Problemを含む幅広い問題である。
本分析の副産物として,バニラ降下による新たな正則化プロセスを導入し,失効する段階的な問題に対処し,悪い静止点から逃れる上で有効であることを示す理論的および実験的証拠を提供する。
論文 参考訳(メタデータ) (2023-10-08T23:39:38Z) - Exploring Viable Algorithmic Options for Learning from Demonstration
(LfD): A Parameterized Complexity Approach [0.0]
本稿では,パラメータ化複雑性解析を用いて,アルゴリズムの選択肢を体系的に探索する方法を示す。
環境、実演、ポリシーに対する多くの(しばしば同時に)制限に対して、我々の問題は、一般的にも、あるいは相対的に、効率的に解決できないことを示す。
論文 参考訳(メタデータ) (2022-05-10T15:54:06Z) - Learning Proximal Operators to Discover Multiple Optima [66.98045013486794]
非家族問題における近位演算子を学習するためのエンドツーエンド手法を提案する。
本手法は,弱い目的と穏やかな条件下では,世界規模で収束することを示す。
論文 参考訳(メタデータ) (2022-01-28T05:53:28Z) - LoOp: Looking for Optimal Hard Negative Embeddings for Deep Metric
Learning [17.571160136568455]
埋め込み空間における最適強陰性(LoOp)を求める新しい手法を提案する。
マイニング法とは違って, 最適硬質負を計算するために, 組込みの組込み間の空間全体を考慮した。
論文 参考訳(メタデータ) (2021-08-20T19:21:33Z) - Statistically Guided Divide-and-Conquer for Sparse Factorization of
Large Matrix [2.345015036605934]
統計的問題をスパース係数回帰として定式化し、分割コンカレントアプローチでそれに取り組む。
第1段階分割では、タスクを1組の同時並列推定(CURE)問題に単純化するための2つの潜時並列アプローチについて検討する。
第2段階分割では、CUREの全解を効率的に追跡するために、一連の単純な増分経路からなる段階学習手法を革新する。
論文 参考訳(メタデータ) (2020-03-17T19:12:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。