The Role of Fake Users in Sequential Recommender Systems
- URL: http://arxiv.org/abs/2410.09936v1
- Date: Sun, 13 Oct 2024 17:44:04 GMT
- Title: The Role of Fake Users in Sequential Recommender Systems
- Authors: Filippo Betello,
- Abstract summary: We assess how the presence of fake users, who engage in random interactions, follow popular or unpopular items, or focus on a single genre, impacts the performance of Sequential Recommender Systems (SRSs)
While traditional metrics like NDCG remain relatively stable, our findings reveal that the presence of fake users severely degrades RLS metrics, often reducing them to near-zero values.
- Score: 0.0
- License:
- Abstract: Sequential Recommender Systems (SRSs) are widely used to model user behavior over time, yet their robustness remains an under-explored area of research. In this paper, we conduct an empirical study to assess how the presence of fake users, who engage in random interactions, follow popular or unpopular items, or focus on a single genre, impacts the performance of SRSs in real-world scenarios. We evaluate two SRS models across multiple datasets, using established metrics such as Normalized Discounted Cumulative Gain (NDCG) and Rank Sensitivity List (RLS) to measure performance. While traditional metrics like NDCG remain relatively stable, our findings reveal that the presence of fake users severely degrades RLS metrics, often reducing them to near-zero values. These results highlight the need for further investigation into the effects of fake users on training data and emphasize the importance of developing more resilient SRSs that can withstand different types of adversarial attacks.
Related papers
- Stop Playing the Guessing Game! Target-free User Simulation for Evaluating Conversational Recommender Systems [15.481944998961847]
PEPPER is an evaluation protocol with target-free user simulators constructed from real-user interaction histories and reviews.
PEPPER enables realistic user-CRS dialogues without falling into simplistic guessing games.
PEPPER presents detailed measures for comprehensively evaluating the preference elicitation capabilities of CRSs.
arXiv Detail & Related papers (2024-11-25T07:36:20Z) - Breaking Determinism: Fuzzy Modeling of Sequential Recommendation Using Discrete State Space Diffusion Model [66.91323540178739]
Sequential recommendation (SR) aims to predict items that users may be interested in based on their historical behavior.
We revisit SR from a novel information-theoretic perspective and find that sequential modeling methods fail to adequately capture randomness and unpredictability of user behavior.
Inspired by fuzzy information processing theory, this paper introduces the fuzzy sets of interaction sequences to overcome the limitations and better capture the evolution of users' real interests.
arXiv Detail & Related papers (2024-10-31T14:52:01Z) - Guided Diffusion-based Counterfactual Augmentation for Robust Session-based Recommendation [11.890250056463914]
Session-based recommendation (SR) models aim to recommend top-K items to a user, based on the user's behaviour during the current session.
Several SR models are proposed in the literature, however, concerns have been raised about their susceptibility to inherent biases in the training data.
We propose a guided diffusion-based counterfactual augmentation framework for SR.
arXiv Detail & Related papers (2024-10-29T09:36:59Z) - Large Language Model Empowered Embedding Generator for Sequential Recommendation [57.49045064294086]
Large Language Model (LLM) has the potential to understand the semantic connections between items, regardless of their popularity.
We present LLMEmb, an innovative technique that harnesses LLM to create item embeddings that bolster the performance of Sequential Recommender Systems.
arXiv Detail & Related papers (2024-09-30T03:59:06Z) - A Reproducible Analysis of Sequential Recommender Systems [13.987953631479662]
SequentialEnsurer Systems (SRSs) have emerged as a highly efficient approach to recommendation systems.
Existing works exhibit shortcomings in replicability of results, leading to inconsistent statements across papers.
Our work fills these gaps by standardising data pre-processing and model implementations.
arXiv Detail & Related papers (2024-08-07T16:23:29Z) - LLM-ESR: Large Language Models Enhancement for Long-tailed Sequential Recommendation [58.04939553630209]
In real-world systems, most users interact with only a handful of items, while the majority of items are seldom consumed.
These two issues, known as the long-tail user and long-tail item challenges, often pose difficulties for existing Sequential Recommendation systems.
We propose the Large Language Models Enhancement framework for Sequential Recommendation (LLM-ESR) to address these challenges.
arXiv Detail & Related papers (2024-05-31T07:24:42Z) - Investigating the Robustness of Counterfactual Learning to Rank Models: A Reproducibility Study [61.64685376882383]
Counterfactual learning to rank (CLTR) has attracted extensive attention in the IR community for its ability to leverage massive logged user interaction data to train ranking models.
This paper investigates the robustness of existing CLTR models in complex and diverse situations.
We find that the DLA models and IPS-DCM show better robustness under various simulation settings than IPS-PBM and PRS with offline propensity estimation.
arXiv Detail & Related papers (2024-04-04T10:54:38Z) - Investigating the Robustness of Sequential Recommender Systems Against
Training Data Perturbations [9.463133630647569]
We introduce Finite Rank-Biased Overlap (FRBO), an enhanced similarity tailored explicitly for finite rankings.
We empirically investigate the impact of removing items at different positions within a temporally ordered sequence.
Our results demonstrate that removing items at the end of the sequence has a statistically significant impact on performance.
arXiv Detail & Related papers (2023-07-24T23:26:46Z) - When Search Meets Recommendation: Learning Disentangled Search
Representation for Recommendation [56.98380787425388]
We propose a search-Enhanced framework for the Sequential Recommendation (SESRec)
SESRec disentangling similar and dissimilar representations within S&R behaviors.
Experiments on both industrial and public datasets demonstrate that SESRec consistently outperforms state-of-the-art models.
arXiv Detail & Related papers (2023-05-18T09:04:50Z) - Accelerated Convergence for Counterfactual Learning to Rank [65.63997193915257]
We show that convergence rate of SGD approaches with IPS-weighted gradients suffers from the large variance introduced by the IPS weights.
We propose a novel learning algorithm, called CounterSample, that has provably better convergence than standard IPS-weighted gradient descent methods.
We prove that CounterSample converges faster and complement our theoretical findings with empirical results.
arXiv Detail & Related papers (2020-05-21T12:53:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.