論文の概要: Deep-Ace: LSTM-based Prokaryotic Lysine Acetylation Site Predictor
- arxiv url: http://arxiv.org/abs/2410.09968v1
- Date: Sun, 20 Oct 2024 06:25:43 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-30 03:53:37.620317
- Title: Deep-Ace: LSTM-based Prokaryotic Lysine Acetylation Site Predictor
- Title(参考訳): Deep-Ace:LSTMを用いたプロカリーゼ性リジンアセチレーションサイト予測器
- Authors: Maham Ilyasa, Abida Yasmeenc, Yaser Daanial Khanb, Arif Mahmood,
- Abstract要約: リジン残基 (K-Ace) のアセチレーションは、原核生物と真核生物の両方で起こる翻訳後修飾である。
本稿では,Long-Short-Term-Memory(LSTM)ネットワークを用いたディープラーニングベースのフレームワークであるDeep-Aceを提案する。
提案手法は, 8種の細菌に対して, 0.80, 0.79, 0.71, 0.75, 0.80, 0.83, 0.756, 0.82 の精度で既存の技術モデルよりも優れていた。
- 参考スコア(独自算出の注目度): 10.168194881848645
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Acetylation of lysine residues (K-Ace) is a post-translation modification occurring in both prokaryotes and eukaryotes. It plays a crucial role in disease pathology and cell biology hence it is important to identify these K-Ace sites. In the past, many machine learning-based models using hand-crafted features and encodings have been used to find and analyze the characteristics of K-Ace sites however these methods ignore long term relationships within sequences and therefore observe performance degradation. In the current work we propose Deep-Ace, a deep learning-based framework using Long-Short-Term-Memory (LSTM) network which has the ability to understand and encode long-term relationships within a sequence. Such relations are vital for learning discriminative and effective sequence representations. In the work reported here, the use of LSTM to extract deep features as well as for prediction of K-Ace sites using fully connected layers for eight different species of prokaryotic models (including B. subtilis, C. glutamicum, E. coli, G. kaustophilus, S. eriocheiris, B. velezensis, S. typhimurium, and M. tuberculosis) has been explored. Our proposed method has outperformed existing state of the art models achieving accuracy as 0.80, 0.79, 0.71, 0.75, 0.80, 0.83, 0.756, and 0.82 respectively for eight bacterial species mentioned above. The method with minor modifications can be used for eukaryotic systems and can serve as a tool for the prognosis and diagnosis of various diseases in humans.
- Abstract(参考訳): リジン残基 (K-Ace) のアセチレーションは、原核生物と真核生物の両方で起こる翻訳後修飾である。
病気の病理や細胞生物学において重要な役割を担っているため、これらのK-Ace部位を同定することが重要である。
これまで,手作りの特徴やエンコーディングを用いた機械学習モデルの多くは,K-Aceサイトの特徴の発見と解析に用いられてきたが,これらの手法はシーケンス内の長期的関係を無視し,性能劣化を観察する。
本稿では,Long-Short-Term-Memory(LSTM)ネットワークを用いたディープラーニングベースのフレームワークであるDeep-Aceを提案する。
このような関係は、識別的および効果的なシーケンス表現の学習に不可欠である。
本報告では, LSTMを用いて深部の特徴を抽出し, 8種類の原核生物モデル(B. subtilis, C. glutamicum, E. coli, G. kaustophilus, S. eriocheiris, B. velezensis, S. typhimurium, M. tuberculosis)の完全結合層を用いたK-Ace部位の予測を行った。
提案手法は, 前述した8種の細菌に対して, 0.80, 0.79, 0.71, 0.75, 0.80, 0.83, 0.756, 0.82 の精度で既存の最先端モデルよりも優れていた。
小修正の方法は真核生物のシステムに使用することができ、ヒトの様々な疾患の予後と診断のツールとして機能する。
関連論文リスト
- CRTRE: Causal Rule Generation with Target Trial Emulation Framework [47.2836994469923]
ターゲットトライアルエミュレーションフレームワーク(CRTRE)を用いた因果ルール生成という新しい手法を提案する。
CRTREは、アソシエーションルールの因果効果を推定するためにランダム化トライアル設計原則を適用している。
次に、病気発症予測などの下流アプリケーションにそのような関連ルールを組み込む。
論文 参考訳(メタデータ) (2024-11-10T02:40:06Z) - Efficient Quality Control of Whole Slide Pathology Images with Human-in-the-loop Training [3.2646075700744928]
Histo whole slide image (WSI) は、特に精度オンコロジーにおいて、ディープラーニングに基づく診断ソリューションの開発に広く利用されている。
これらの診断ソフトウェアのほとんどは、トレーニングやテストデータにおけるバイアスや不純物に弱いため、不正確な診断につながる可能性がある。
我々は、WSIを6つの組織領域に分離する、頑健だが軽量なディープラーニングベースの分類器であるHistoROIを紹介した。
論文 参考訳(メタデータ) (2024-09-29T07:08:45Z) - PathoLM: Identifying pathogenicity from the DNA sequence through the Genome Foundation Model [9.285895422810704]
PathoLMは、細菌およびウイルス配列の病原性の同定に最適化された最先端の病原体言語モデルである。
ESKAPEE病原体を含む約30種のウイルスと細菌からなる包括的データセットを開発した。
比較評価では、PathoLMはDciPathoのような既存のモデルよりも劇的に優れており、堅牢なゼロショットと少数ショット機能を示している。
論文 参考訳(メタデータ) (2024-06-19T00:53:48Z) - A Diagnostic Model for Acute Lymphoblastic Leukemia Using Metaheuristics and Deep Learning Methods [6.318593483920089]
急性リンパ性白血病(ALL)重症度は、爆発細胞の存在と比率によって決定される。
本稿では,ResNetをベースとした特徴抽出器を用いて,さまざまな特徴抽出器や分類器とともにALLを検出する。
この手法は90.71%の精度と95.76%の感度を達成し、このデータセットの指標は他よりも優れていた。
論文 参考訳(メタデータ) (2024-06-02T13:25:44Z) - CIMIL-CRC: a clinically-informed multiple instance learning framework for patient-level colorectal cancer molecular subtypes classification from H\&E stained images [42.771819949806655]
CIMIL-CRCは、事前学習した特徴抽出モデルと主成分分析(PCA)を効率よく組み合わせ、全てのパッチから情報を集約することで、MSI/MSS MIL問題を解決するフレームワークである。
我々は,TCGA-CRC-DXコホートを用いたモデル開発のための5倍のクロスバリデーション実験装置を用いて,曲線下平均面積(AUC)を用いてCIMIL-CRC法の評価を行った。
論文 参考訳(メタデータ) (2024-01-29T12:56:11Z) - Classification of lung cancer subtypes on CT images with synthetic
pathological priors [41.75054301525535]
同症例のCT像と病理像との間には,画像パターンに大規模な関連性が存在する。
肺がんサブタイプをCT画像上で正確に分類するための自己生成型ハイブリッド機能ネットワーク(SGHF-Net)を提案する。
論文 参考訳(メタデータ) (2023-08-09T02:04:05Z) - Learning to diagnose cirrhosis from radiological and histological labels
with joint self and weakly-supervised pretraining strategies [62.840338941861134]
そこで本稿では, 放射線学者が注釈付けした大規模データセットからの転写学習を活用して, 小さい付加データセットで利用できる組織学的スコアを予測することを提案する。
我々は,肝硬変の予測を改善するために,異なる事前訓練法,すなわち弱い指導法と自己指導法を比較した。
この方法は、METAVIRスコアのベースライン分類を上回り、AUCが0.84、バランスの取れた精度が0.75に達する。
論文 参考訳(メタデータ) (2023-02-16T17:06:23Z) - A Novel Dataset and a Deep Learning Method for Mitosis Nuclei
Segmentation and Classification [10.960222475663006]
ミトコンドリア核数(Mitosis nuclear count)は乳癌の病理診断における重要な指標の1つである。
そこで本研究では,SCMitosisという2段階のミトーシスセグメンテーションと分類法を提案する。
提案モデルはICPR 2012データセット上で検証され、最高Fスコア値は0.8687である。
論文 参考訳(メタデータ) (2022-12-27T08:12:42Z) - Comparative analysis of deep learning approaches for AgNOR-stained
cytology samples interpretation [52.77024349608834]
本稿では, 深層学習手法を用いて, 好気性ヌクレオラオーガナイザ領域 (AgNOR) 染色スライダを解析する方法を提案する。
以上の結果から,バックボーンとしてResNet-18やResNet-34を用いたU-Netを用いたセマンティックセマンティックセマンティックセマンティクスは類似した結果を示す。
最も優れたモデルは、それぞれ0.83、0.92、0.99の核、クラスター、衛星のIoUを示す。
論文 参考訳(メタデータ) (2022-10-19T15:15:32Z) - Cervical Cytology Classification Using PCA & GWO Enhanced Deep Features
Selection [1.990876596716716]
子宮頸癌は世界でも最も致命的かつ一般的な疾患の1つである。
ディープラーニングと特徴選択を利用した完全自動化フレームワークを提案する。
このフレームワークは3つの公開ベンチマークデータセットで評価されている。
論文 参考訳(メタデータ) (2021-06-09T08:57:22Z) - A Systematic Approach to Featurization for Cancer Drug Sensitivity
Predictions with Deep Learning [49.86828302591469]
35,000以上のニューラルネットワークモデルをトレーニングし、一般的な成果化技術を駆使しています。
RNA-seqは128以上のサブセットであっても非常に冗長で情報的であることがわかった。
論文 参考訳(メタデータ) (2020-04-30T20:42:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。