Quantum Linear Time-Translation-Invariant Systems: Conjugate Symplectic Structure, Uncertainty Bounds, and Tomography
- URL: http://arxiv.org/abs/2410.09976v2
- Date: Tue, 15 Oct 2024 17:05:01 GMT
- Title: Quantum Linear Time-Translation-Invariant Systems: Conjugate Symplectic Structure, Uncertainty Bounds, and Tomography
- Authors: Jacques Ding, Hudson A. Loughlin, Vivishek Sudhir,
- Abstract summary: We develop a general quantization scheme for multimode classical LTI systems that reveals their fundamental quantum noise.
We show that such systems can be synthesized using frequency-dependent interferometers and squeezers.
These results establish a complete and systematic framework for the analysis, synthesis, and measurement of arbitrary quantum LTI systems.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Linear time-translation-invariant (LTI) models offer simple, yet powerful, abstractions of complex classical dynamical systems. Quantum versions of such models have so far relied on assumptions of Markovianity or an internal state-space description. We develop a general quantization scheme for multimode classical LTI systems that reveals their fundamental quantum noise, is applicable to non-Markovian scenarios, and does not require knowledge of an internal description. The resulting model is that of an open quantum LTI system whose dilation to a closed system is characterized by elements of the conjugate symplectic group. Using Lie group techniques, we show that such systems can be synthesized using frequency-dependent interferometers and squeezers. We derive tighter Heisenberg uncertainty bounds, which constrain the ultimate performance of any LTI system, and obtain an invariant representation of their output noise covariance matrix that reveals the ubiquity of "complex squeezing" in lossy systems. This frequency-dependent quantum resource can be hidden to homodyne and heterodyne detection and can only be revealed with more general "symplectodyne" detection. These results establish a complete and systematic framework for the analysis, synthesis, and measurement of arbitrary quantum LTI systems.
Related papers
- Fourier Neural Operators for Learning Dynamics in Quantum Spin Systems [77.88054335119074]
We use FNOs to model the evolution of random quantum spin systems.
We apply FNOs to a compact set of Hamiltonian observables instead of the entire $2n$ quantum wavefunction.
arXiv Detail & Related papers (2024-09-05T07:18:09Z) - Non-classical correlations between a quantum probe and complex quantum systems in presence of noise [0.0]
Non-classical correlations generated within a quantum probe system when it interacts with a large, macroscopic system can signal the presence of quantum features in the latter.
We consider a detailed model including noise for such systems wherein a small quantum probe interacts with a large system in order to delineate the regimes with respect to coupling strengths and noise levels.
arXiv Detail & Related papers (2024-02-14T23:21:36Z) - Hybrid quantum-classical systems: Quasi-free Markovian dynamics [0.0]
In the case of a quantum-classical hybrid system, the problem of characterizing the most general dynamical semigroup is solved under the restriction of being quasi-free.
We show how to extract multi-time probabilities and how to connect them to the quantum notions of positive operator valued measure and instrument.
A concrete example is given, showing how a classical component can input noise into a quantum one and how the classical system can extract information on the behaviour of the quantum one.
arXiv Detail & Related papers (2023-07-05T19:26:09Z) - Unbiasing time-dependent Variational Monte Carlo by projected quantum
evolution [44.99833362998488]
We analyze the accuracy and sample complexity of variational Monte Carlo approaches to simulate quantum systems classically.
We prove that the most used scheme, the time-dependent Variational Monte Carlo (tVMC), is affected by a systematic statistical bias.
We show that a different scheme based on the solution of an optimization problem at each time step is free from such problems.
arXiv Detail & Related papers (2023-05-23T17:38:10Z) - Detecting entanglement in quantum many-body systems via permutation
moments [4.376631240407246]
We propose a framework for designing multipartite entanglement criteria based on permutation moments.
These criteria show strong detection capability in the multi-qubit Ising model with a long-range $XY$ Hamiltonian.
Our framework can also be generalized to detect the much more complicated entanglement structure in quantum many-body systems.
arXiv Detail & Related papers (2022-03-16T04:39:54Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Dissipative quasi-particle picture for quadratic Markovian open quantum
systems [0.0]
Correlations between different regions of a quantum many-body system can be quantified.
For closed systems, analytical and numerical tools can accurately capture the time-evolution of subsystem entropies.
Here, we make progress by formulating a dissipative quasi-particle picture for a general class of noninteracting open quantum systems.
arXiv Detail & Related papers (2021-06-22T18:10:47Z) - Time periodicity from randomness in quantum systems [0.0]
Many complex systems can spontaneously oscillate under non-periodic forcing.
We show that this behavior can emerge within the repeated-interaction description of open quantum systems.
Specifically, we consider a many-body quantum system that undergoes dissipation due to sequential coupling with auxiliary systems at random times.
arXiv Detail & Related papers (2021-04-27T18:02:31Z) - Probing quantum information propagation with out-of-time-ordered
correlators [41.12790913835594]
Small-scale quantum information processors hold the promise to efficiently emulate many-body quantum systems.
Here, we demonstrate the measurement of out-of-time-ordered correlators (OTOCs)
A central requirement for our experiments is the ability to coherently reverse time evolution.
arXiv Detail & Related papers (2021-02-23T15:29:08Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.