Non-classical correlations between a quantum probe and complex quantum systems in presence of noise
- URL: http://arxiv.org/abs/2402.09618v3
- Date: Mon, 8 Jul 2024 20:29:37 GMT
- Title: Non-classical correlations between a quantum probe and complex quantum systems in presence of noise
- Authors: Bijoy John Mathew, Sanchit Srivastava, Anil Shaji,
- Abstract summary: Non-classical correlations generated within a quantum probe system when it interacts with a large, macroscopic system can signal the presence of quantum features in the latter.
We consider a detailed model including noise for such systems wherein a small quantum probe interacts with a large system in order to delineate the regimes with respect to coupling strengths and noise levels.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Non-classical correlations generated within a quantum probe system when it interacts with a large, macroscopic system can signal the presence of quantum features in the latter. Theoretical models have considered how entanglement generated in photosynthetic bacteria can be probed using light that interacts with them. More recently, a tardigrade was entangled to a transmon qubit. We consider a detailed model including noise for such systems wherein a small quantum probe interacts with a large system in order to delineate the regimes with respect to coupling strengths and noise levels in which such signatures of quantumness in macroscopic systems can realistically be detected.
Related papers
- Quantum Linear Time-Translation-Invariant Systems: Conjugate Symplectic Structure, Uncertainty Bounds, and Tomography [0.0]
We develop a general quantization scheme for multimode classical LTI systems that reveals their fundamental quantum noise.
We show that such systems can be synthesized using frequency-dependent interferometers and squeezers.
These results establish a complete and systematic framework for the analysis, synthesis, and measurement of arbitrary quantum LTI systems.
arXiv Detail & Related papers (2024-10-13T19:34:35Z) - Disentangling the Physics of the Attractive Hubbard Model via the
Accessible and Symmetry-Resolved Entanglement Entropies [2.991853491946018]
We show how to compute accessible and symmetry-resolved entanglements for interacting fermion systems.
We apply these tools to study the pairing and charge density waves exhibited in the paradigmatic attractive Hubbard model via entanglement.
arXiv Detail & Related papers (2023-12-18T23:06:19Z) - Quantum metrology in complex systems and experimental verification by
quantum simulation [3.1179335904543537]
We briefly review the schemes of quantum metrology in various complex systems, including non-Markovian noise, correlated noise, quantum critical system.
On the other hand, the booming development of quantum information allows us to utilize quantum simulation experiments to test the feasibility of various theoretical schemes.
arXiv Detail & Related papers (2023-07-05T03:29:56Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Pure Dephasing of Light-Matter Systems in the Ultrastrong and
Deep-Strong Coupling Regimes [0.21108097398435333]
Pure dephasing originates from the non-dissipative information exchange between quantum systems and environments.
Here we investigate how pure dephasing of one of the components of a hybrid quantum system affects the dephasing rate of the system transitions.
arXiv Detail & Related papers (2022-05-11T08:57:15Z) - Sensing quantum chaos through the non-unitary geometric phase [62.997667081978825]
We propose a decoherent mechanism for sensing quantum chaos.
The chaotic nature of a many-body quantum system is sensed by studying the implications that the system produces in the long-time dynamics of a probe coupled to it.
arXiv Detail & Related papers (2021-04-13T17:24:08Z) - Quantum Markov Chain Monte Carlo with Digital Dissipative Dynamics on
Quantum Computers [52.77024349608834]
We develop a digital quantum algorithm that simulates interaction with an environment using a small number of ancilla qubits.
We evaluate the algorithm by simulating thermal states of the transverse Ising model.
arXiv Detail & Related papers (2021-03-04T18:21:00Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - The role of quantum superposition in a coupled interferometric system
for macroscopic quantum feature generations [0.0]
macroscopic entanglement gives great benefits in both photon loss and sensitivity.
Recently, a novel method of macroscopic entanglement generation has been proposed and demonstrated in a coupled interferometric system using classical laser light.
The function of path superposition applied to independent bipartite classical systems is analyzed to unveil secrets of quantum features.
arXiv Detail & Related papers (2021-02-23T13:21:30Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.