Tracing Human Stress from Physiological Signals using UWB Radar
- URL: http://arxiv.org/abs/2410.10155v1
- Date: Mon, 14 Oct 2024 04:47:16 GMT
- Title: Tracing Human Stress from Physiological Signals using UWB Radar
- Authors: Jia Xu, Teng Xiao, Pin Lv, Zhe Chen, Chao Cai, Yang Zhang, Zehui Xiong,
- Abstract summary: This paper formally defines the stress tracing problem, which emphasizes the continuous detection of human stress states.
A novel deep stress tracing method, named DST, is presented.
Experimental results show that the proposed DST method significantly outperforms all the baselines in terms of tracing human stress states.
- Score: 31.246225867596337
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Stress tracing is an important research domain that supports many applications, such as health care and stress management; and its closest related works are derived from stress detection. However, these existing works cannot well address two important challenges facing stress detection. First, most of these studies involve asking users to wear physiological sensors to detect their stress states, which has a negative impact on the user experience. Second, these studies have failed to effectively utilize multimodal physiological signals, which results in less satisfactory detection results. This paper formally defines the stress tracing problem, which emphasizes the continuous detection of human stress states. A novel deep stress tracing method, named DST, is presented. Note that DST proposes tracing human stress based on physiological signals collected by a noncontact ultrawideband radar, which is more friendly to users when collecting their physiological signals. In DST, a signal extraction module is carefully designed at first to robustly extract multimodal physiological signals from the raw RF data of the radar, even in the presence of body movement. Afterward, a multimodal fusion module is proposed in DST to ensure that the extracted multimodal physiological signals can be effectively fused and utilized. Extensive experiments are conducted on three real-world datasets, including one self-collected dataset and two publicity datasets. Experimental results show that the proposed DST method significantly outperforms all the baselines in terms of tracing human stress states. On average, DST averagely provides a 6.31% increase in detection accuracy on all datasets, compared with the best baselines.
Related papers
- Stress Assessment with Convolutional Neural Network Using PPG Signals [0.22499166814992436]
This research is focused on developing a novel technique to assess stressful events using raw PPG signals recorded by Empatica E4 sensor.
An adaptive convolutional neural network (CNN) combined with Multilayer Perceptron (MLP) has been utilized to realize the detection of stressful events.
This research will use a dataset that is publicly available and named wearable stress and effect detection (WESAD)
arXiv Detail & Related papers (2024-10-16T06:24:16Z) - Stress Detection Using PPG Signal and Combined Deep CNN-MLP Network [0.20971479389679332]
This research work takes advantage of PPG signals to detect stress events.
The PPG signals used in this work are collected from one of the newest publicly available datasets named as UBFC-Phys.
The results obtained from the proposed model indicate that stress can be detected with an accuracy of approximately 82 percent.
arXiv Detail & Related papers (2024-10-10T13:38:55Z) - Enhancing Angular Resolution via Directionality Encoding and Geometric Constraints in Brain Diffusion Tensor Imaging [70.66500060987312]
Diffusion-weighted imaging (DWI) is a type of Magnetic Resonance Imaging (MRI) technique sensitised to the diffusivity of water molecules.
This work proposes DirGeo-DTI, a deep learning-based method to estimate reliable DTI metrics even from a set of DWIs acquired with the minimum theoretical number (6) of gradient directions.
arXiv Detail & Related papers (2024-09-11T11:12:26Z) - Stressor Type Matters! -- Exploring Factors Influencing Cross-Dataset Generalizability of Physiological Stress Detection [5.304745246313982]
This study explores the generalizability of machine learning models trained on HRV features for binary stress detection.
Our findings reveal a crucial factor affecting model generalizability: stressor type.
We recommend matching the stressor type when deploying HRV-based stress models in new environments.
arXiv Detail & Related papers (2024-05-06T14:47:48Z) - Investigating the Generalizability of Physiological Characteristics of Anxiety [3.4036712573981607]
We evaluate the generalizability of physiological features that have been shown to be correlated with anxiety and stress to high-arousal emotions.
This work is the first cross-corpus evaluation across stress and arousal from ECG and EDA signals, contributing new findings about the generalizability of stress detection.
arXiv Detail & Related papers (2024-01-23T16:49:54Z) - DGSD: Dynamical Graph Self-Distillation for EEG-Based Auditory Spatial
Attention Detection [49.196182908826565]
Auditory Attention Detection (AAD) aims to detect target speaker from brain signals in a multi-speaker environment.
Current approaches primarily rely on traditional convolutional neural network designed for processing Euclidean data like images.
This paper proposes a dynamical graph self-distillation (DGSD) approach for AAD, which does not require speech stimuli as input.
arXiv Detail & Related papers (2023-09-07T13:43:46Z) - COVI-AgentSim: an Agent-based Model for Evaluating Methods of Digital
Contact Tracing [68.68882022019272]
COVI-AgentSim is an agent-based compartmental simulator based on virology, disease progression, social contact networks, and mobility patterns.
We use COVI-AgentSim to perform cost-adjusted analyses comparing no DCT to: 1) standard binary contact tracing (BCT) that assigns binary recommendations based on binary test results; and 2) a rule-based method for feature-based contact tracing (FCT) that assigns a graded level of recommendation based on diverse individual features.
arXiv Detail & Related papers (2020-10-30T00:47:01Z) - Video-based Remote Physiological Measurement via Cross-verified Feature
Disentangling [121.50704279659253]
We propose a cross-verified feature disentangling strategy to disentangle the physiological features with non-physiological representations.
We then use the distilled physiological features for robust multi-task physiological measurements.
The disentangled features are finally used for the joint prediction of multiple physiological signals like average HR values and r signals.
arXiv Detail & Related papers (2020-07-16T09:39:17Z) - Detecting Parkinsonian Tremor from IMU Data Collected In-The-Wild using
Deep Multiple-Instance Learning [59.74684475991192]
Parkinson's Disease (PD) is a slowly evolving neuro-logical disease that affects about 1% of the population above 60 years old.
PD symptoms include tremor, rigidity and braykinesia.
We present a method for automatically identifying tremorous episodes related to PD, based on IMU signals captured via a smartphone device.
arXiv Detail & Related papers (2020-05-06T09:02:30Z) - GSR Analysis for Stress: Development and Validation of an Open Source
Tool for Noisy Naturalistic GSR Data [0.0]
Galvanic Skin Response (GSR), also known as Electrodermal Activity (EDA), is one of the leading indicators for stress.
In this paper, we are proposing an open-source tool for GSR analysis, which uses deep learning algorithms alongside statistical algorithms to extract GSR features for stress detection.
The results show that we are capable of detecting stress with the accuracy of 92 percent using 10-fold cross-validation.
arXiv Detail & Related papers (2020-05-04T20:40:39Z) - AutoHR: A Strong End-to-end Baseline for Remote Heart Rate Measurement
with Neural Searching [76.4844593082362]
We investigate the reason why existing end-to-end networks perform poorly in challenging conditions and establish a strong baseline for remote HR measurement with architecture search (NAS)
Comprehensive experiments are performed on three benchmark datasets on both intra-temporal and cross-dataset testing.
arXiv Detail & Related papers (2020-04-26T05:43:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.