Random non-Hermitian action theory for stochastic quantum dynamics: from canonical to path integral quantization
- URL: http://arxiv.org/abs/2410.10164v1
- Date: Mon, 14 Oct 2024 05:15:18 GMT
- Title: Random non-Hermitian action theory for stochastic quantum dynamics: from canonical to path integral quantization
- Authors: Pei Wang,
- Abstract summary: We develop a theory of random non-Hermitian action that describes the nonlinear dynamics of quantum states in Hilbert space.
We investigate the evolution of a single-particle Gaussian wave packet under the influence of non-Hermiticity and randomness.
- Score: 6.405171754125318
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We develop a theory of random non-Hermitian action that, after quantization, describes the stochastic nonlinear dynamics of quantum states in Hilbert space. Focusing on fermionic fields, we propose both canonical quantization and path integral quantization, demonstrating that these two approaches are equivalent. Using this formalism, we investigate the evolution of a single-particle Gaussian wave packet under the influence of non-Hermiticity and randomness. Our results show that specific types of non-Hermiticity lead to wave packet localization, while randomness affects the central position of the wave packet, causing the variance of its distribution to increase with the strength of the randomness.
Related papers
- Random covariant quantum channels [2.9741863650371805]
Group symmetries inherent in quantum channels often make them tractable.
We introduce natural probability distributions for covariant quantum channels.
We discuss the threshold phenomenon for positive partial transpose and entanglement breaking properties.
arXiv Detail & Related papers (2024-03-06T12:39:30Z) - Quantum Walks in Weak Stochastic Gauge Fields [0.0]
Behaviour of random quantum walks is known to be diffusive.
weak electric gauge fields reveal the persistence of Bloch oscillations despite decoherence.
Proposed models provide insights into the interplay between randomness and coherent dynamics of quantum walks.
arXiv Detail & Related papers (2024-02-14T12:32:15Z) - Earthquake Quantization [0.0]
We propose a novel quantization prescription, where the paths of a path-integral are not random, but rather solutions of a geodesic equation in a random background.
We show that this change of perspective can be made mathematically equivalent to the usual formulations of non-relativistic quantum mechanics.
arXiv Detail & Related papers (2023-03-10T19:00:03Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Dissipative quantum dynamics, phase transitions and non-Hermitian random
matrices [0.0]
We work in the framework of the dissipative Dicke model which is archetypal of symmetry-breaking phase transitions in open quantum systems.
We establish that the Liouvillian describing the quantum dynamics exhibits distinct spectral features of integrable and chaotic character.
Our approach can be readily adapted for classifying the nature of quantum dynamics across dissipative critical points in other open quantum systems.
arXiv Detail & Related papers (2021-12-10T19:00:01Z) - Quantum Fokker-Planck Dynamics [0.0]
This paper aims to obtain a quantum counterpart of Fokker-Planck dynamics.
Within this framework we present a quantization of the generalized Laplace operator.
We then construct and examine the behaviour of the corresponding Markov semigroups.
arXiv Detail & Related papers (2021-06-10T13:05:57Z) - Dissipative evolution of quantum Gaussian states [68.8204255655161]
We derive a new model of dissipative time evolution based on unitary Lindblad operators.
As we demonstrate, the considered evolution proves useful both as a description for random scattering and as a tool in dissipator engineering.
arXiv Detail & Related papers (2021-05-26T16:03:34Z) - Non-equilibrium stationary states of quantum non-Hermitian lattice
models [68.8204255655161]
We show how generic non-Hermitian tight-binding lattice models can be realized in an unconditional, quantum-mechanically consistent manner.
We focus on the quantum steady states of such models for both fermionic and bosonic systems.
arXiv Detail & Related papers (2021-03-02T18:56:44Z) - Bernstein-Greene-Kruskal approach for the quantum Vlasov equation [91.3755431537592]
The one-dimensional stationary quantum Vlasov equation is analyzed using the energy as one of the dynamical variables.
In the semiclassical case where quantum tunneling effects are small, an infinite series solution is developed.
arXiv Detail & Related papers (2021-02-18T20:55:04Z) - From stochastic spin chains to quantum Kardar-Parisi-Zhang dynamics [68.8204255655161]
We introduce the asymmetric extension of the Quantum Symmetric Simple Exclusion Process.
We show that the time-integrated current of fermions defines a height field which exhibits a quantum non-linear dynamics.
arXiv Detail & Related papers (2020-01-13T14:30:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.