Error-mitigated entanglement-assisted quantum process tomography
- URL: http://arxiv.org/abs/2502.10715v1
- Date: Sat, 15 Feb 2025 08:07:18 GMT
- Title: Error-mitigated entanglement-assisted quantum process tomography
- Authors: Zhihao Wu, Lingling Lao, Chengqi Zhuke, Yantong Liu, Xinfang Zhang, Shichuan Xue, Mingtang Deng, Junjie Wu, Kai Lu,
- Abstract summary: We propose an error-mitigated entanglement-assisted quantum process tomography (EM-EAPT) framework to address these limitations.
By leveraging a maximally entangled state to reduce state preparation complexity, our method significantly enhances robustness against SPAM errors.
This work advances practical quantum verification tools for NISQ devices, enabling higher-fidelity characterization of quantum processes under realistic noise conditions.
- Score: 11.010724957083704
- License:
- Abstract: In the era of noisy intermediate-scale quantum computing, it is of crucial importance to verify quantum processes and extract information. Quantum process tomography is a typical approach, however, both resource-intensive and vulnerable to state preparation and measurement errors. Here, we propose an error-mitigated entanglement-assisted quantum process tomography (EM-EAPT) framework to address these limitations. By leveraging a maximally entangled state to reduce state preparation complexity and integrating error mitigation techniques, our method significantly enhances robustness against SPAM errors. Experimental validation on a superconducting processor demonstrates the efficacy of EM-EAPT for two-qubit and three-qubit quantum processes. Results show more accurate average gate fidelities close to the realistic estimation, achieving 98.1$\pm$ 0.03% for a CNOT gate and 88.1%$\pm$ 0.04% for a cascaded CNOT process after error mitigation, compared to non-mitigated implementations. This work advances practical quantum verification tools for NISQ devices, enabling higher-fidelity characterization of quantum processes under realistic noise conditions.
Related papers
- Application of zero-noise extrapolation-based quantum error mitigation to a silicon spin qubit [0.08603957004874943]
We report the implementation of a zero-noise extrapolation-based error mitigation technique on a silicon spin qubit platform.
This technique has been successfully demonstrated for other platforms such as superconducting qubits, trapped-ion qubits, and photonic processors.
arXiv Detail & Related papers (2024-10-14T09:51:21Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Readout error mitigated quantum state tomography tested on superconducting qubits [0.0]
We test the ability of readout error mitigation to correct realistic noise found in systems composed of quantum two-level objects (qubits)
By treating readout error mitigation in the context of state tomography the method becomes largely readout mode-, architecture-, noise source-, and quantum state-independent.
We identify noise sources for which readout error mitigation worked well, and observed decreases in readout by a factor of up to 30.
arXiv Detail & Related papers (2023-12-07T10:54:17Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
We study a systematic perturbative expansion in miscalibrated parameters of the Molmer-Sorensen entangling gate.
We compute the gate evolution operator which allows us to obtain relevant key properties.
We verify the predictions from our model by benchmarking them against measurements in a trapped-ion quantum processor.
arXiv Detail & Related papers (2021-12-10T10:56:16Z) - Parameterized process characterization with reduced resource
requirements [0.5735035463793008]
This work proposes an alternative approach that requires significantly fewer resources for unitary process characterization without prior knowledge of the process.
By measuring the quantum process as rotated through the X and Y axes on the Sphere Bloch, we can acquire enough information to reconstruct the quantum process matrix $chi$ and measure its fidelity.
We demonstrate in numerical experiments that the method can improve gate fidelity via a noise reduction in the imaginary part of the process matrix, along with a stark decrease in the number of experiments needed to perform the characterization.
arXiv Detail & Related papers (2021-09-22T17:41:32Z) - Minimizing estimation runtime on noisy quantum computers [0.0]
"engineered likelihood function" (ELF) is used for carrying out Bayesian inference.
We show how the ELF formalism enhances the rate of information gain in sampling as the physical hardware transitions from the regime of noisy quantum computers.
This technique speeds up a central component of many quantum algorithms, with applications including chemistry, materials, finance, and beyond.
arXiv Detail & Related papers (2020-06-16T17:46:18Z) - Deterministic correction of qubit loss [48.43720700248091]
Loss of qubits poses one of the fundamental obstacles towards large-scale and fault-tolerant quantum information processors.
We experimentally demonstrate the implementation of a full cycle of qubit loss detection and correction on a minimal instance of a topological surface code.
arXiv Detail & Related papers (2020-02-21T19:48:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.