論文の概要: Robustness of near-thermal dynamics on digital quantum computers
- arxiv url: http://arxiv.org/abs/2410.10794v2
- Date: Mon, 4 Nov 2024 20:41:19 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-06 15:11:34.543910
- Title: Robustness of near-thermal dynamics on digital quantum computers
- Title(参考訳): ディジタル量子コンピュータにおける近熱力学のロバスト性
- Authors: Eli Chertkov, Yi-Hsiang Chen, Michael Lubasch, David Hayes, Michael Foss-Feig,
- Abstract要約: トロッター化量子回路は、広く想定されるよりも、量子ゲート誤差とトロッター(離散化)誤差の両方に対してより堅牢であることを示す。
我々は、熱状態に近いランダムな生成状態の統計的アンサンブルである新しい理論ツールを使用する。
- 参考スコア(独自算出の注目度): 4.124390946636936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding the impact of gate errors on quantum circuits is crucial to determining the potential applications of quantum computers, especially in the absence of large-scale error-corrected hardware. We put forward analytical arguments, corroborated by extensive numerical and experimental evidence, that Trotterized quantum circuits simulating the time-evolution of systems near thermal equilibrium are substantially more robust to both quantum gate errors and Trotter (discretization) errors than is widely assumed. In Quantinuum's trapped-ion computers, the weakly entangling gates that appear in Trotterized circuits can be implemented natively, and their error rate is smaller when they generate less entanglement; from benchmarking, we know that the error for a gate $\exp[-i (Z\otimes Z) \tau]$ decreases roughly linearly with $\tau$, up to a small offset at $\tau = 0$. We provide extensive evidence that this scaling, together with the robustness of near-thermal dynamics to both gate and discretization errors, facilitates substantial improvements in the achievable accuracy of Trotterized dynamics on near-term quantum computers. We make heavy use of a new theoretical tool -- a statistical ensemble of random product states that approximates a thermal state, which can be efficiently prepared with low noise on quantum computers. We outline how the random product state ensemble can be used to predict, optimize, and design Hamiltonian simulation experiments on near-thermal quantum systems.
- Abstract(参考訳): 量子回路におけるゲートエラーの影響を理解することは、量子コンピュータの潜在的な応用、特に大規模なエラー訂正ハードウェアが存在しない場合、決定に不可欠である。
熱平衡付近の系の時間進化をシミュレートするトロッター化量子回路は、広く仮定されるよりも量子ゲート誤差とトロッター(離散化)誤差の両方に対してかなり堅牢である。
Quantinuumの閉じ込められたイオンコンピュータでは、トロッター回路に現れる弱いエンタングリングゲートをネイティブに実装でき、そのエラー率は、より少ないエンタングメントを生成するときに小さくなります。
このスケーリングは、ゲートおよび離散化エラーに対する近熱力学の堅牢性とともに、短期量子コンピュータ上でのトロッタライズドダイナミクスの達成可能な精度を大幅に向上させる。
我々は、量子コンピュータ上の低ノイズで効率的に準備できる熱状態を近似する、ランダムな生成状態の統計的アンサンブルである新しい理論ツールを多用している。
準熱量子系のハミルトンシミュレーション実験を予測、最適化、設計するために、ランダムな積状態アンサンブルがどのように使用できるのかを概説する。
関連論文リスト
- Practical limitations of quantum data propagation on noisy quantum processors [0.9362259192191963]
このような量子アルゴリズムは、現在の量子プロセッサのノイズの性質のため、信頼性の高い結果を得るためには、エラー確率が非常に低いシングルビットと2キュービットのゲートを必要とする。
具体的には、変動パラメータの伝搬の相対誤差が量子ハードウェアのノイズの確率とどのようにスケールするかについて上限を与える。
論文 参考訳(メタデータ) (2023-06-22T17:12:52Z) - Simulating prethermalization using near-term quantum computers [1.2189422792863451]
本稿では,短期ディジタル量子コンピュータ上での動的特性と平衡特性を探索するための実験的プロトコルを提案する。
ハミルトンの関心の進化を比較的粗いトロッター分解でも熱化を研究することは可能であることを示す。
論文 参考訳(メタデータ) (2023-03-15T09:04:57Z) - Averaging gate approximation error and performance of Unitary Coupled Cluster ansatz in Pre-FTQC Era [0.0]
フォールトトレラント量子計算(FTQC)は、雑音耐性のある方法で量子アルゴリズムを実装するために不可欠である。
FTQCでは、量子回路はフォールトトレラントの実装が可能な普遍ゲートに分解される。
本稿では,所定の量子回路に対するClifford+$T$分解誤差を非偏極雑音としてモデル化できることを提案する。
論文 参考訳(メタデータ) (2023-01-10T19:00:01Z) - Experimental validation of the Kibble-Zurek Mechanism on a Digital
Quantum Computer [62.997667081978825]
キブル・ズレック機構は対称性の破れを伴う非平衡量子相転移の本質物理学を捉えている。
我々は、ランダウ・ツェナー進化の下で、最も単純な量子の場合、単一の量子ビットに対してKZMを実験的に検証した。
我々は、異なる回路環境とトポロジに埋め込まれた個々の量子ビットに関する広範囲なIBM-Q実験について報告する。
論文 参考訳(メタデータ) (2022-08-01T18:00:02Z) - Analytical and experimental study of center line miscalibrations in M\o
lmer-S\o rensen gates [51.93099889384597]
モルマー・ソレンセンエンタングゲートの誤校正パラメータの系統的摂動展開について検討した。
我々はゲート進化演算子を計算し、関連する鍵特性を得る。
我々は、捕捉されたイオン量子プロセッサにおける測定値に対して、モデルからの予測をベンチマークすることで検証する。
論文 参考訳(メタデータ) (2021-12-10T10:56:16Z) - Error-mitigated deep-circuit quantum simulation: steady state and
relaxation rate problems [4.762232147934851]
閉量子系のディジタル量子シミュレーションは、トロッター誤差の蓄積に対して堅牢であることを示す。
本稿では,量子相転移臨界点近傍のスケーリング挙動に基づく新しい誤差軽減手法を提案する。
論文 参考訳(メタデータ) (2021-11-18T11:01:45Z) - Hardware-Efficient, Fault-Tolerant Quantum Computation with Rydberg
Atoms [55.41644538483948]
我々は中性原子量子コンピュータにおいてエラー源の完全な特徴付けを行う。
計算部分空間外の状態への原子量子ビットの崩壊に伴う最も重要なエラーに対処する,新しい,明らかに効率的な手法を開発した。
我々のプロトコルは、アルカリ原子とアルカリ原子の両方にエンコードされた量子ビットを持つ最先端の中性原子プラットフォームを用いて、近い将来に実装できる。
論文 参考訳(メタデータ) (2021-05-27T23:29:53Z) - Continuous-time dynamics and error scaling of noisy highly-entangling
quantum circuits [58.720142291102135]
最大21キュービットの雑音量子フーリエ変換プロセッサをシミュレートする。
我々は、デジタルエラーモデルに頼るのではなく、微視的な散逸過程を考慮に入れている。
動作中の消散機構によっては、入力状態の選択が量子アルゴリズムの性能に強い影響を与えることが示される。
論文 参考訳(メタデータ) (2021-02-08T14:55:44Z) - Observation of separated dynamics of charge and spin in the
Fermi-Hubbard model [30.848418511975588]
強い相関を持つ量子系は高温超伝導を含む多くのエキゾチックな物理現象を引き起こす。
ここでは16量子ビットの量子プロセッサを用いた1次元フェルミ・ハバードモデルのダイナミクスをシミュレーションする。
論文 参考訳(メタデータ) (2020-10-15T18:15:57Z) - Fault-tolerant Coding for Quantum Communication [71.206200318454]
ノイズチャネルの多くの用途でメッセージを確実に送信するために、回路をエンコードしてデコードする。
すべての量子チャネル$T$とすべての$eps>0$に対して、以下に示すゲートエラー確率のしきい値$p(epsilon,T)$が存在し、$C-epsilon$より大きいレートはフォールトトレラント的に達成可能である。
我々の結果は、遠方の量子コンピュータが高レベルのノイズの下で通信する必要があるような、大きな距離での通信やオンチップでの通信に関係している。
論文 参考訳(メタデータ) (2020-09-15T15:10:50Z) - Boundaries of quantum supremacy via random circuit sampling [69.16452769334367]
Googleの最近の量子超越性実験は、量子コンピューティングがランダムな回路サンプリングという計算タスクを実行する遷移点を示している。
観測された量子ランタイムの利点の制約を、より多くの量子ビットとゲートで検討する。
論文 参考訳(メタデータ) (2020-05-05T20:11:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。