論文の概要: Liger Kernel: Efficient Triton Kernels for LLM Training
- arxiv url: http://arxiv.org/abs/2410.10989v1
- Date: Mon, 14 Oct 2024 18:17:01 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:04:37.579106
- Title: Liger Kernel: Efficient Triton Kernels for LLM Training
- Title(参考訳): Liger Kernel: LLMトレーニングのための効率的なトリトンカーネル
- Authors: Byron, Hsu, Yun Dai, Vignesh Kothapalli, Qingquan Song, Shao Tang, Siyu Zhu, Steven Shimizu, Shivam Sahni, Haowen Ning, Yanning Chen,
- Abstract要約: 大規模言語モデル(LLM)を大規模に効果的に訓練することは、ますます増大する計算要求によって引き起こされる、恐ろしい挑戦となる。
LLMトレーニング用に開発されたTritonカーネルのオープンソースセットであるLiger- Kernelを紹介する。
カーネル操作の融合や入力チャンキングといったカーネル最適化技術により、カーネルはトレーニングのスループットが平均20%向上し、GPUメモリ使用量が60%削減された。
- 参考スコア(独自算出の注目度): 5.862238284029773
- License:
- Abstract: Training Large Language Models (LLMs) efficiently at scale presents a formidable challenge, driven by their ever-increasing computational demands and the need for enhanced performance. In this work, we introduce Liger-Kernel, an open-sourced set of Triton kernels developed specifically for LLM training. With kernel optimization techniques like kernel operation fusing and input chunking, our kernels achieve on average a 20% increase in training throughput and a 60% reduction in GPU memory usage for popular LLMs compared to HuggingFace implementations. In addition, Liger-Kernel is designed with modularity, accessibility, and adaptability in mind, catering to both casual and expert users. Comprehensive benchmarks and integration tests are built in to ensure compatibility, performance, correctness, and convergence across diverse computing environments and model architectures. The source code is available under a permissive license at: github.com/linkedin/Liger-Kernel.
- Abstract(参考訳): 大規模言語モデル(LLM)を効果的に大規模に訓練することは、計算要求の増大と性能向上の必要性により、非常に困難な課題を提起する。
本稿では,LLM学習用に開発されたオープンソースTritonカーネルであるLiger-Kernelを紹介する。
カーネル操作の融合や入力チャンキングといったカーネル最適化技術により、カーネルはHuggingFaceの実装と比較してトレーニングのスループットが平均20%向上し、GPUメモリ使用率が60%減少した。
加えて、Liger-Kernelはモジュール性、アクセシビリティ、適応性を念頭に設計されており、カジュアルユーザとエキスパートユーザの両方に対応している。
総合ベンチマークと統合テストは、様々なコンピューティング環境とモデルアーキテクチャの互換性、性能、正確性、収束性を保証するために組み込まれている。
ソースコードは、 github.com/linkedin/Liger-Kernelのパーミッシブライセンスで入手できる。
関連論文リスト
- KernelBench: Can LLMs Write Efficient GPU Kernels? [36.4117525096377]
KernelBenchは、高速で正確なカーネルを記述する言語モデルの能力を評価するためのオープンソースのフレームワークである。
本稿では,関数的に正しい生成カーネルの割合を計測する,新しい評価基準であるfast_pを紹介する。
実験の結果,フロンティア推論モデルが最も優れているが,全体としては不足していることがわかった。
論文 参考訳(メタデータ) (2025-02-14T19:30:53Z) - Democratizing AI: Open-source Scalable LLM Training on GPU-based Supercomputers [65.35142508909892]
AxoNNと呼ばれる,スケーラブルでポータブルなオープンソースフレームワークで実装された新しい4次元ハイブリッド並列アルゴリズムを提案する。
本稿では,Frontier 上で AxoNN を用いて405ビリオンパラメータ LLM の微調整を行う。
論文 参考訳(メタデータ) (2025-02-12T06:05:52Z) - An Efficient Sparse Kernel Generator for O(3)-Equivariant Deep Networks [0.5737287537823071]
回転同変グラフニューラルネットワークは、空間深層学習タスクにおける最先端の性能を得る。
クレーブシュ=ゴルドンテンソル積(Clebsch-Gordon tensor product, CG)は、2つの高次特徴ベクトルと高度に構造化されたスパーステンソルを交換して高密度出力ベクトルを生成するカーネルである。
我々は,CGテンソル製品用のGPUスパースカーネルジェネレータを導入し,既存のオープンソース実装とクローズドソース実装の大幅な高速化を実現した。
論文 参考訳(メタデータ) (2025-01-23T08:20:47Z) - Highly Optimized Kernels and Fine-Grained Codebooks for LLM Inference on Arm CPUs [0.8217552831952]
大きな言語モデル(LLM)は、言語理解と生成に関する考え方を変えました。
LLM量子化によく使われるグループ量子化形式は、計算上のオーバーヘッドとリソース集約型量子化プロセスを持つ。
本稿では,LLMの超低精度量子化のためのグループワイド非一様符号ブックに基づく量子化手法を提案する。
論文 参考訳(メタデータ) (2024-12-23T03:44:29Z) - TorchTitan: One-stop PyTorch native solution for production ready LLM pre-training [17.157552816494427]
本稿では,オープンソースのPyTorchネイティブ分散トレーニングシステムであるTorchTitanを紹介する。
最先端のテクニックを統一し、統合を合理化し、オーバーヘッドを減らす。
大型言語モデル (LLM) のLlama 3.1 ファミリー上での TorchTitan の評価を行った。
論文 参考訳(メタデータ) (2024-10-09T03:26:11Z) - Enabling High-Sparsity Foundational Llama Models with Efficient Pretraining and Deployment [56.44025052765861]
大規模言語モデル(LLM)は自然言語処理(NLP)に革命をもたらしたが、そのサイズは計算のボトルネックを生み出している。
そこで本研究では,高性能LLMの高精度かつ疎結合な基本バージョンを作成するための新しいアプローチを提案する。
スパース量子化LLaMAの最大8.6倍のCPU上での総高速化を示す。
論文 参考訳(メタデータ) (2024-05-06T16:03:32Z) - CoLLiE: Collaborative Training of Large Language Models in an Efficient
Way [59.09824823710863]
CoLLiEは、大規模な言語モデルの協調トレーニングを容易にする効率的なライブラリである。
モジュール設計と包括的な機能により、CoLLiEは効率性、使いやすさ、カスタマイズのバランスのとれたブレンドを提供する。
論文 参考訳(メタデータ) (2023-12-01T08:02:16Z) - FusionAI: Decentralized Training and Deploying LLMs with Massive
Consumer-Level GPUs [57.12856172329322]
我々は、巨大な未使用のコンシューマレベルのGPUをアンロックする分散システムを構想する。
このシステムは、CPUとGPUメモリの制限、ネットワーク帯域幅の低さ、ピアとデバイスの多様性など、重要な課題に直面している。
論文 参考訳(メタデータ) (2023-09-03T13:27:56Z) - Harnessing Deep Learning and HPC Kernels via High-Level Loop and Tensor Abstractions on CPU Architectures [67.47328776279204]
この研究は、効率的でポータブルなDeep LearningとHigh Performance Computingカーネルを開発するためのフレームワークを導入している。
1)プロセッシングプリミティブ(TPP)を用いた計算コアの表現と,2)高レベルな宣言的手法でTPPのまわりの論理ループの表現の2つのステップでカーネルの開発を分解する。
我々は、スタンドアロンカーネルと、さまざまなCPUプラットフォームにおける最先端実装よりも優れたエンドツーエンドワークロードを使用して、このアプローチの有効性を実証する。
論文 参考訳(メタデータ) (2023-04-25T05:04:44Z) - PolyScientist: Automatic Loop Transformations Combined with Microkernels
for Optimization of Deep Learning Primitives [55.79741270235602]
深層学習カーネル開発のためのハイブリッドソリューションを開発する。
我々は、高度な多面体技術を用いて、パフォーマンスのために外部ループを自動的に調整する。
論文 参考訳(メタデータ) (2020-02-06T08:02:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。