Persistent Topological Features in Large Language Models
- URL: http://arxiv.org/abs/2410.11042v1
- Date: Mon, 14 Oct 2024 19:46:23 GMT
- Title: Persistent Topological Features in Large Language Models
- Authors: Yuri Gardinazzi, Giada Panerai, Karthik Viswanathan, Alessio Ansuini, Alberto Cazzaniga, Matteo Biagetti,
- Abstract summary: We introduce persistence similarity, a new metric that quantifies the persistence and transformation of topological features.
Unlike traditional similarity measures, our approach captures the entire evolutionary trajectory of these features.
As a practical application, we leverage persistence similarity to identify and prune redundant layers.
- Score: 0.6597195879147556
- License:
- Abstract: Understanding the decision-making processes of large language models (LLMs) is critical given their widespread applications. Towards this goal, describing the topological and geometrical properties of internal representations has recently provided valuable insights. For a more comprehensive characterization of these inherently complex spaces, we present a novel framework based on zigzag persistence, a method in topological data analysis (TDA) well-suited for describing data undergoing dynamic transformations across layers. Within this framework, we introduce persistence similarity, a new metric that quantifies the persistence and transformation of topological features such as $p$-cycles throughout the model layers. Unlike traditional similarity measures, our approach captures the entire evolutionary trajectory of these features, providing deeper insights into the internal workings of LLMs. As a practical application, we leverage persistence similarity to identify and prune redundant layers, demonstrating comparable performance to state-of-the-art methods across several benchmark datasets. Additionally, our analysis reveals consistent topological behaviors across various models and hyperparameter settings, suggesting a universal structure in LLM internal representations.
Related papers
- Interpetable Target-Feature Aggregation for Multi-Task Learning based on Bias-Variance Analysis [53.38518232934096]
Multi-task learning (MTL) is a powerful machine learning paradigm designed to leverage shared knowledge across tasks to improve generalization and performance.
We propose an MTL approach at the intersection between task clustering and feature transformation based on a two-phase iterative aggregation of targets and features.
In both phases, a key aspect is to preserve the interpretability of the reduced targets and features through the aggregation with the mean, which is motivated by applications to Earth science.
arXiv Detail & Related papers (2024-06-12T08:30:16Z) - Topological Perspectives on Optimal Multimodal Embedding Spaces [0.0]
This paper delves into a comparative analysis between CLIP and its recent counterpart, CLOOB.
Our approach encompasses a comprehensive examination of the modality gap drivers, the clustering structures existing across both high and low dimensions, and the pivotal role that dimension collapse plays in shaping their respective embedding spaces.
arXiv Detail & Related papers (2024-05-29T08:28:23Z) - Topological Parallax: A Geometric Specification for Deep Perception
Models [0.778001492222129]
We introduce topological parallax as a theoretical and computational tool that compares a trained model to a reference dataset.
Our examples show that this geometric similarity between dataset and model is essential to trustworthy and perturbation.
This new concept will add value to the current debate regarding the unclear relationship between overfitting and generalization in applications of deep-learning.
arXiv Detail & Related papers (2023-06-20T18:45:24Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - $k$-Means Clustering for Persistent Homology [0.0]
We prove convergence of the $k$-means clustering algorithm on persistence diagram space.
We also establish theoretical properties of the solution to the optimization problem in the Karush--Kuhn--Tucker framework.
arXiv Detail & Related papers (2022-10-18T17:18:51Z) - Dynamic Latent Separation for Deep Learning [67.62190501599176]
A core problem in machine learning is to learn expressive latent variables for model prediction on complex data.
Here, we develop an approach that improves expressiveness, provides partial interpretation, and is not restricted to specific applications.
arXiv Detail & Related papers (2022-10-07T17:56:53Z) - The Geometry of Self-supervised Learning Models and its Impact on
Transfer Learning [62.601681746034956]
Self-supervised learning (SSL) has emerged as a desirable paradigm in computer vision.
We propose a data-driven geometric strategy to analyze different SSL models using local neighborhoods in the feature space induced by each.
arXiv Detail & Related papers (2022-09-18T18:15:38Z) - Image Synthesis via Semantic Composition [74.68191130898805]
We present a novel approach to synthesize realistic images based on their semantic layouts.
It hypothesizes that for objects with similar appearance, they share similar representation.
Our method establishes dependencies between regions according to their appearance correlation, yielding both spatially variant and associated representations.
arXiv Detail & Related papers (2021-09-15T02:26:07Z) - Learning Robust State Abstractions for Hidden-Parameter Block MDPs [55.31018404591743]
We leverage ideas of common structure from the HiP-MDP setting to enable robust state abstractions inspired by Block MDPs.
We derive instantiations of this new framework for both multi-task reinforcement learning (MTRL) and meta-reinforcement learning (Meta-RL) settings.
arXiv Detail & Related papers (2020-07-14T17:25:27Z) - Deep Learning modeling of Limit Order Book: a comparative perspective [0.0]
The present work addresses theoretical and practical questions in the domain of Deep Learning for High Frequency Trading.
State-of-the-art models such as Random models, Logistic Regressions, LSTMs, LSTMs equipped with an Attention mask, CNN-LSTM and Attentions are reviewed and compared on the same tasks.
The underlying dimensions of the modeling techniques are investigated to understand whether these are intrinsic to the Limit Order Book's dynamics.
arXiv Detail & Related papers (2020-07-12T17:06:30Z) - Hierarchical regularization networks for sparsification based learning
on noisy datasets [0.0]
hierarchy follows from approximation spaces identified at successively finer scales.
For promoting model generalization at each scale, we also introduce a novel, projection based penalty operator across multiple dimension.
Results show the performance of the approach as a data reduction and modeling strategy on both synthetic and real datasets.
arXiv Detail & Related papers (2020-06-09T18:32:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.