Machine Learning approach to reconstruct Density Matrices from Quantum Marginals
- URL: http://arxiv.org/abs/2410.11145v1
- Date: Tue, 15 Oct 2024 00:00:27 GMT
- Title: Machine Learning approach to reconstruct Density Matrices from Quantum Marginals
- Authors: Daniel Uzcategui-Contreras, Antonio Guerra, Sebastian Niklitschek, Aldo Delgado,
- Abstract summary: We propose a machine learning approach to address one aspect of the quantum marginal problem.
Our method involves combining a quantum marginal imposition technique with convolutional denoising autoencoders.
- Score: 0.0
- License:
- Abstract: In this work, we propose a machine learning approach to address one aspect of the quantum marginal problem: finding a global density matrix compatible with a given set of quantum marginals. Our method involves combining a quantum marginal imposition technique with convolutional denoising autoencoders. The loss function ensures that the output density matrix satisfies essential properties such as hermiticity, positivity, and normalization. Through extensive numerical simulations, we demonstrate the effectiveness of our approach, achieving a high success rate and accuracy. Our model can serve as an initial guess generator for solving semidefinite programs (SDPs) associated with the quantum marginal problem, potentially accelerating convergence and improving accuracy. This work highlights the potential of machine learning techniques to address complex problems in quantum mechanics.
Related papers
- The curse of random quantum data [62.24825255497622]
We quantify the performances of quantum machine learning in the landscape of quantum data.
We find that the training efficiency and generalization capabilities in quantum machine learning will be exponentially suppressed with the increase in qubits.
Our findings apply to both the quantum kernel method and the large-width limit of quantum neural networks.
arXiv Detail & Related papers (2024-08-19T12:18:07Z) - Full Band Structure Calculation of Semiconducting Materials on a Noisy Quantum Processor [2.6327434138210095]
We propose the Reduced Quantum Equation-of-Motion method to find the entire energy spectrum of a quantum system.
We analyse the performance of our method on two noise models and calculate the excitation energies of a bulk Silicon and Gallium Arsenide using our method on an IBM quantum processor.
arXiv Detail & Related papers (2024-05-15T06:35:39Z) - Neural auto-designer for enhanced quantum kernels [59.616404192966016]
We present a data-driven approach that automates the design of problem-specific quantum feature maps.
Our work highlights the substantial role of deep learning in advancing quantum machine learning.
arXiv Detail & Related papers (2024-01-20T03:11:59Z) - Large-Scale Quantum Separability Through a Reproducible Machine Learning
Lens [5.499796332553708]
The quantum separability problem consists in deciding whether a bipartite density matrix is entangled or separable.
We propose a machine learning pipeline for finding approximate solutions for this NP-hard problem in large-scale scenarios.
arXiv Detail & Related papers (2023-06-15T18:53:26Z) - Quantum Worst-Case to Average-Case Reductions for All Linear Problems [66.65497337069792]
We study the problem of designing worst-case to average-case reductions for quantum algorithms.
We provide an explicit and efficient transformation of quantum algorithms that are only correct on a small fraction of their inputs into ones that are correct on all inputs.
arXiv Detail & Related papers (2022-12-06T22:01:49Z) - Potential and limitations of quantum extreme learning machines [55.41644538483948]
We present a framework to model QRCs and QELMs, showing that they can be concisely described via single effective measurements.
Our analysis paves the way to a more thorough understanding of the capabilities and limitations of both QELMs and QRCs.
arXiv Detail & Related papers (2022-10-03T09:32:28Z) - Squeezing and quantum approximate optimization [0.6562256987706128]
Variational quantum algorithms offer fascinating prospects for the solution of optimization problems using digital quantum computers.
However, the achievable performance in such algorithms and the role of quantum correlations therein remain unclear.
We show numerically as well as on an IBM quantum chip how highly squeezed states are generated in a systematic procedure.
arXiv Detail & Related papers (2022-05-20T18:00:06Z) - Noisy Quantum Kernel Machines [58.09028887465797]
An emerging class of quantum learning machines is that based on the paradigm of quantum kernels.
We study how dissipation and decoherence affect their performance.
We show that decoherence and dissipation can be seen as an implicit regularization for the quantum kernel machines.
arXiv Detail & Related papers (2022-04-26T09:52:02Z) - Dequantizing the Quantum Singular Value Transformation: Hardness and
Applications to Quantum Chemistry and the Quantum PCP Conjecture [0.0]
We show that the Quantum Singular Value Transformation can be efficiently "dequantized"
We show that with inverse-polynomial precision, the same problem becomes BQP-complete.
We also discuss how this dequantization technique may help make progress on the central quantum PCP.
arXiv Detail & Related papers (2021-11-17T12:50:13Z) - Numerical hardware-efficient variational quantum simulation of a soliton
solution [0.0]
We discuss the capabilities of quantum algorithms with special attention paid to a hardware-efficient variational eigensolver.
A delicate interplay between magnetic interactions allows one to stabilize a chiral state that destroys the homogeneity of magnetic ordering.
We argue that, while being capable of correctly reproducing a uniform magnetic configuration, the hardware-efficient ansatz meets difficulties in providing a detailed description to a noncollinear magnetic structure.
arXiv Detail & Related papers (2021-05-13T11:58:18Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.