Quantum State Preparation for Probability Distributions with Mirror Symmetry Using Matrix Product States
- URL: http://arxiv.org/abs/2403.16729v2
- Date: Sun, 28 Jul 2024 13:31:50 GMT
- Title: Quantum State Preparation for Probability Distributions with Mirror Symmetry Using Matrix Product States
- Authors: Yuichi Sano, Ikko Hamamura,
- Abstract summary: Quantum circuits for loading probability distributions into quantum states are essential subroutines in quantum algorithms used in physics, finance engineering, and machine learning.
We propose a novel quantum state preparation method for probability distribution with mirror symmetry using matrix product states.
Our method reduces the entanglement of probability distributions and improves the accuracy of approximations by matrix product states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum circuits for loading probability distributions into quantum states are essential subroutines in quantum algorithms used in physics, finance engineering, and machine learning. The ability to implement these with high accuracy in shallow quantum circuits is a critical issue. We propose a novel quantum state preparation method for probability distribution with mirror symmetry using matrix product states. By considering mirror symmetry, our method reduces the entanglement of probability distributions and improves the accuracy of approximations by matrix product states. As a result, we improved the accuracy by two orders of magnitude over existing methods using matrix product states. Our approach, characterized by a shallow quantum circuit primarily comprising nearest-neighbor qubit gates and linear scalability with qubit count, is highly advantageous for noisy quantum devices. Also, our experimental findings reveal that the approximation accuracy in tensor networks depends heavily on the bond dimension, with minimal reliance on the number of qubits. Our method is experimentally demonstrated for a normal distribution encoded into 10 and 20 qubits on a real quantum processor.
Related papers
- Solving an Industrially Relevant Quantum Chemistry Problem on Quantum Hardware [31.15746974078601]
We calculate the lowest energy eigenvalue of active space Hamiltonians of industrially relevant and strongly correlated metal chelates on trapped ion quantum hardware.
We are able to achieve chemical accuracy by training a variational quantum algorithm on quantum hardware, followed by a classical diagonalization in the subspace of states measured as outputs of the quantum circuit.
arXiv Detail & Related papers (2024-08-20T12:50:15Z) - A Quantum Approximate Optimization Method For Finding Hadamard Matrices [0.0]
We propose a novel qubit-efficient method by implementing the Hadamard matrix searching algorithm on a gate-based quantum computer.
We present the formulation of the method, construction of corresponding quantum circuits, and experiment results in both a quantum simulator and a real gate-based quantum computer.
arXiv Detail & Related papers (2024-08-15T06:25:50Z) - In Search of Quantum Advantage: Estimating the Number of Shots in Quantum Kernel Methods [30.565491081930997]
We develop an approach for estimating desired precision of kernel values, which is translated into the number of circuit runs.
We stress that quantum kernel methods should not only be considered from the machine learning performance perspective, but also from the context of the resource consumption.
arXiv Detail & Related papers (2024-07-22T16:29:35Z) - Supervised binary classification of small-scale digits images with a trapped-ion quantum processor [56.089799129458875]
We show that a quantum processor can correctly solve the basic classification task considered.
With the increase of the capabilities quantum processors, they can become a useful tool for machine learning.
arXiv Detail & Related papers (2024-06-17T18:20:51Z) - Mitigating Errors on Superconducting Quantum Processors through Fuzzy
Clustering [38.02852247910155]
A new Quantum Error Mitigation (QEM) technique uses Fuzzy C-Means clustering to specifically identify measurement error patterns.
We report a proof-of-principle validation of the technique on a 2-qubit register, obtained as a subset of a real NISQ 5-qubit superconducting quantum processor.
We demonstrate that the FCM-based QEM technique allows for reasonable improvement of the expectation values of single- and two-qubit gates based quantum circuits.
arXiv Detail & Related papers (2024-02-02T14:02:45Z) - Quantum state preparation for bell-shaped probability distributions using deconvolution methods [0.0]
We present a hybrid classical-quantum approach to load quantum data.
We use the Jensen-Shannon distance as the cost function to quantify the closeness of the outcome from the classical step and the target distribution.
The output from the deconvolution step is used to construct the quantum circuit required to load the given probability distribution.
arXiv Detail & Related papers (2023-10-08T06:55:47Z) - Quantum State Preparation of Normal Distributions using Matrix Product
States [0.4604003661048266]
We generate quantum states encoding a class of normal probability distributions in a trapped ion quantum computer for up to 20 qubits.
Our work provides a study in quantum hardware for scalable distribution loading, which is the basis of a wide range of algorithms that provide quantum advantage.
arXiv Detail & Related papers (2023-03-02T20:27:25Z) - An Introduction to Quantum Machine Learning for Engineers [36.18344598412261]
Quantum machine learning is emerging as a dominant paradigm to program gate-based quantum computers.
This book provides a self-contained introduction to quantum machine learning for an audience of engineers with a background in probability and linear algebra.
arXiv Detail & Related papers (2022-05-11T12:10:52Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Automatically Differentiable Quantum Circuit for Many-qubit State
Preparation [1.5662820454886202]
We propose the automatically differentiable quantum circuit (ADQC) approach to efficiently prepare arbitrary quantum many-qubit states.
The circuit is optimized by updating the latent gates using back propagation to minimize the distance between the evolved and target states.
Our work sheds light on the "intelligent construction" of quantum circuits for many-qubit systems by combining with the machine learning methods.
arXiv Detail & Related papers (2021-04-30T12:22:26Z) - Efficient Quantum Circuits for Accurate State Preparation of Smooth,
Differentiable Functions [0.8315657895474382]
We show that there exist families of quantum states that can be prepared to high precision with circuits of linear size and depth.
We further develop an algorithm that requires only linear classical time to generate accurate linear-depth circuits.
arXiv Detail & Related papers (2020-05-09T02:31:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.