論文の概要: Neural Symbolic Regression of Complex Network Dynamics
- arxiv url: http://arxiv.org/abs/2410.11185v1
- Date: Tue, 15 Oct 2024 02:02:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:00:45.773193
- Title: Neural Symbolic Regression of Complex Network Dynamics
- Title(参考訳): 複雑ネットワークダイナミクスのニューラルシンボリック回帰
- Authors: Haiquan Qiu, Shuzhi Liu, Quanming Yao,
- Abstract要約: そこで本研究では,物理インスパイアされたニューラルダイナミクス回帰(PI-NDSR)を用いて,力学の記号表現を自動的に学習する手法を提案する。
本手法は, 種々のダイナミックスから生成された合成データセットと, 病気の拡散に関する実際のデータセットについて検討する。
- 参考スコア(独自算出の注目度): 28.356824329954495
- License:
- Abstract: Complex networks describe important structures in nature and society, composed of nodes and the edges that connect them. The evolution of these networks is typically described by dynamics, which are labor-intensive and require expert knowledge to derive. However, because the complex network involves noisy observations from multiple trajectories of nodes, existing symbolic regression methods are either not applicable or ineffective on its dynamics. In this paper, we propose Physically Inspired Neural Dynamics Symbolic Regression (PI-NDSR), a method based on neural networks and genetic programming to automatically learn the symbolic expression of dynamics. Our method consists of two key components: a Physically Inspired Neural Dynamics (PIND) to augment and denoise trajectories through observed trajectory interpolation; and a coordinated genetic search algorithm to derive symbolic expressions. This algorithm leverages references of node dynamics and edge dynamics from neural dynamics to avoid overfitted expressions in symbolic space. We evaluate our method on synthetic datasets generated by various dynamics and real datasets on disease spreading. The results demonstrate that PI-NDSR outperforms the existing method in terms of both recovery probability and error.
- Abstract(参考訳): 複雑なネットワークは自然と社会の重要な構造を記述し、ノードとそれらを結ぶエッジで構成されている。
これらのネットワークの進化は典型的には、労働集約的であり、導出するために専門家の知識を必要とする力学によって説明される。
しかし、複雑なネットワークはノードの複数の軌跡からのノイズの多い観測を必要とするため、既存の記号回帰法は適用できないか、そのダイナミクスに効果がないかのいずれかである。
本稿では,ニューラルネットワークと遺伝的プログラミングに基づく動的表現の自動学習手法であるPhysically Inspired Neural Dynamics Symbolic Regression (PI-NDSR)を提案する。
提案手法は,観測軌道補間により軌道を拡大・認知するPIND(Physically Inspired Neural Dynamics)と,記号表現を導出する協調型遺伝的探索アルゴリズムの2つの主要成分から構成される。
このアルゴリズムは、ニューラルネットワークからのノードダイナミクスとエッジダイナミクスの参照を利用して、記号空間における過度に適合した表現を避ける。
本手法は, 種々のダイナミックスから生成された合成データセットと, 病気の拡散に関する実際のデータセットについて検討する。
その結果,PI-NDSRは回復確率と誤差の両方の観点から既存手法よりも優れていた。
関連論文リスト
- Dynamical stability and chaos in artificial neural network trajectories along training [3.379574469735166]
浅いニューラルネットワークのネットワーク軌跡をこのレンズを通して解析することにより,このプロセスの動的特性について検討する。
我々は,学習率の仕組みによって,規則的かつカオス的な行動のヒントを見いだす。
この研究は、力学系理論、ネットワーク理論、機械学習のアイデアの交叉受精にも貢献している。
論文 参考訳(メタデータ) (2024-04-08T17:33:11Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Discrete, compositional, and symbolic representations through attractor dynamics [51.20712945239422]
我々は,思考の確率的言語(PLoT)に似た認知過程をモデル化するために,アトラクタダイナミクスを記号表現と統合した新しいニューラルシステムモデルを導入する。
我々のモデルは、連続表現空間を、事前定義されたプリミティブに頼るのではなく、教師なし学習を通じて、記号系の意味性と構成性の特徴を反映する、記号列に対応する引き付け状態を持つ離散盆地に分割する。
このアプローチは、認知操作の複雑な双対性を反映したより包括的なモデルを提供する、AIにおける表現力の証明された神経弁別可能な基質であるニューラルダイナミクスを通じて、シンボル処理とサブシンボル処理の両方を統合する統一的なフレームワークを確立する。
論文 参考訳(メタデータ) (2023-10-03T05:40:56Z) - Interpretable statistical representations of neural population dynamics and geometry [4.459704414303749]
そこで我々は,manifold dynamics を局所流れ場に分解し,それらを共通潜在空間にマッピングする表現学習手法 MARBLE を提案する。
シミュレーションされた非線形力学系,リカレントニューラルネットワーク,および霊長類および歯列類からの実験的単一ニューロン記録において,創発的低次元潜伏表現が発見された。
これらの表現はニューラルネットワークや動物間で一貫性があり、認知計算の堅牢な比較を可能にする。
論文 参考訳(メタデータ) (2023-04-06T21:11:04Z) - Expressive architectures enhance interpretability of dynamics-based
neural population models [2.294014185517203]
シミュレーションされたニューラルネットワークから潜在カオスを引き付ける際のシーケンシャルオートエンコーダ(SAE)の性能を評価する。
広帯域再帰型ニューラルネットワーク(RNN)を用いたSAEでは,真の潜在状態次元での正確な発射速度を推定できないことがわかった。
論文 参考訳(メタデータ) (2022-12-07T16:44:26Z) - Quiver neural networks [5.076419064097734]
ニューラルネットワーク接続アーキテクチャの解析に対する一様理論的アプローチを開発する。
数学におけるquiver表現理論にインスパイアされたこのアプローチは、精巧なデータフローを捉えるためのコンパクトな方法を与える。
論文 参考訳(メタデータ) (2022-07-26T09:42:45Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Constructing Neural Network-Based Models for Simulating Dynamical
Systems [59.0861954179401]
データ駆動モデリングは、真のシステムの観測からシステムの力学の近似を学ぼうとする代替パラダイムである。
本稿では,ニューラルネットワークを用いた動的システムのモデル構築方法について検討する。
基礎的な概要に加えて、関連する文献を概説し、このモデリングパラダイムが克服すべき数値シミュレーションから最も重要な課題を概説する。
論文 参考訳(メタデータ) (2021-11-02T10:51:42Z) - Learning Contact Dynamics using Physically Structured Neural Networks [81.73947303886753]
ディープニューラルネットワークと微分方程式の接続を用いて、オブジェクト間の接触ダイナミクスを表現するディープネットワークアーキテクチャのファミリを設計する。
これらのネットワークは,ノイズ観測から不連続な接触事象をデータ効率良く学習できることを示す。
以上の結果から,タッチフィードバックの理想化形態は,この学習課題を扱いやすくするための重要な要素であることが示唆された。
論文 参考訳(メタデータ) (2021-02-22T17:33:51Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z) - Input-to-State Representation in linear reservoirs dynamics [15.491286626948881]
貯留層コンピューティングは、リカレントニューラルネットワークを設計するための一般的なアプローチである。
これらのネットワークの動作原理は、完全には理解されていない。
このようなネットワークの力学の新たな解析法を提案する。
論文 参考訳(メタデータ) (2020-03-24T00:14:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。