論文の概要: SplitSEE: A Splittable Self-supervised Framework for Single-Channel EEG Representation Learning
- arxiv url: http://arxiv.org/abs/2410.11200v1
- Date: Tue, 15 Oct 2024 02:34:33 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:03:42.111287
- Title: SplitSEE: A Splittable Self-supervised Framework for Single-Channel EEG Representation Learning
- Title(参考訳): SplitSEE: 単一チャネル脳波表現学習のための分割型自己教師型フレームワーク
- Authors: Rikuto Kotoge, Zheng Chen, Tasuku Kimura, Yasuko Matsubara, Takufumi Yanagisawa, Haruhiko Kishima, Yasushi Sakurai,
- Abstract要約: SplitSEEは、単一チャネル脳波における効果的な時間周波数表現学習のための自己教師型フレームワークである。
単一のチャネルのEEGからのみ表現を学習するが、マルチチャネルのベースラインよりも優れています。
部分的なモデルレイヤを使用して、ハイかつ安定したパフォーマンスを実現する。
- 参考スコア(独自算出の注目度): 8.373376507515347
- License:
- Abstract: While end-to-end multi-channel electroencephalography (EEG) learning approaches have shown significant promise, their applicability is often constrained in neurological diagnostics, such as intracranial EEG resources. When provided with a single-channel EEG, how can we learn representations that are robust to multi-channels and scalable across varied tasks, such as seizure prediction? In this paper, we present SplitSEE, a structurally splittable framework designed for effective temporal-frequency representation learning in single-channel EEG. The key concept of SplitSEE is a self-supervised framework incorporating a deep clustering task. Given an EEG, we argue that the time and frequency domains are two distinct perspectives, and hence, learned representations should share the same cluster assignment. To this end, we first propose two domain-specific modules that independently learn domain-specific representation and address the temporal-frequency tradeoff issue in conventional spectrogram-based methods. Then, we introduce a novel clustering loss to measure the information similarity. This encourages representations from both domains to coherently describe the same input by assigning them a consistent cluster. SplitSEE leverages a pre-training-to-fine-tuning framework within a splittable architecture and has following properties: (a) Effectiveness: it learns representations solely from single-channel EEG but has even outperformed multi-channel baselines. (b) Robustness: it shows the capacity to adapt across different channels with low performance variance. Superior performance is also achieved with our collected clinical dataset. (c) Scalability: With just one fine-tuning epoch, SplitSEE achieves high and stable performance using partial model layers.
- Abstract(参考訳): エンド・ツー・エンドのマルチチャネル脳波(EEG)学習アプローチは大きな可能性を秘めているが、その適用性は頭蓋内脳波リソースなどの神経学的診断において制限されることが多い。
単一チャネルのEEGを提供することで、マルチチャネルに対して堅牢で、発作予測などさまざまなタスクにまたがるスケーラブルな表現を学べるだろうか?
本稿では,単一チャネル脳波を用いた時間周波数表現学習のための構造分割可能なフレームワークSplitSEEを提案する。
SplitSEEのキーコンセプトは、ディープクラスタリングタスクを組み込んだ自己管理フレームワークである。
脳波が与えられた場合、時間領域と周波数領域は2つの異なる視点であり、したがって学習された表現は同じクラスタ割り当てを共有するべきであると論じる。
そこで我々はまず,ドメイン固有表現を独立に学習し,従来の分光法における時間周波数トレードオフ問題に対処する2つのドメイン固有モジュールを提案する。
そして,情報類似度を測定するために,新たなクラスタリング損失を導入する。
これにより、両方のドメインからの表現は、一貫性のあるクラスタを割り当てることで、同じ入力をコヒーレントに記述することを奨励する。
SplitSEEは、分割可能なアーキテクチャ内で事前トレーニングからファインチューニングのフレームワークを活用し、以下の特性を持つ。
(a)有効性:単一チャネル脳波のみから表現を学習するが、マルチチャネルベースラインよりも優れる。
(b)ロバスト性: 性能のばらつきが低い異なるチャネルにまたがる適応能力を示す。
また, 収集した臨床データセットを用いて, 上位成績も達成した。
(c)スケーラビリティ: 1つの微調整のエポックさで、SplitSEEは部分的なモデルレイヤを使用してハイかつ安定したパフォーマンスを実現します。
関連論文リスト
- Deep Domain Isolation and Sample Clustered Federated Learning for Semantic Segmentation [2.515027627030043]
本稿では,2次元セグメンテーションタスクにおける参加者間の共変量変化の影響を初めて検討する。
我々は、モデルの勾配空間内で直接画像領域を分離するディープドメイン分離(DDI)を開発する。
我々は,このクラスタリングアルゴリズムをSCFL(Sample Clustered Federated Learning)フレームワークを通じて活用する。
論文 参考訳(メタデータ) (2024-10-04T12:43:07Z) - On Layer-wise Representation Similarity: Application for Multi-Exit Models with a Single Classifier [20.17288970927518]
本研究では,各変圧器の隠蔽層間の表現の類似性について検討する。
本稿では,内部表現の類似性を高めるための協調学習手法を提案する。
論文 参考訳(メタデータ) (2024-06-20T16:41:09Z) - DiffVein: A Unified Diffusion Network for Finger Vein Segmentation and
Authentication [50.017055360261665]
DiffVeinは、静脈分割と認証タスクを同時に処理する統合拡散モデルベースのフレームワークである。
これら2つのブランチ間の機能相互作用を改善するために,2つの特別なモジュールを導入する。
このようにして、我々のフレームワークは拡散とセグメンテーションの埋め込みの間の動的相互作用を可能にする。
論文 参考訳(メタデータ) (2024-02-03T06:49:42Z) - USER: Unified Semantic Enhancement with Momentum Contrast for Image-Text
Retrieval [115.28586222748478]
Image-Text Retrieval (ITR) は、与えられたクエリに意味のあるターゲットインスタンスを、他のモダリティから検索することを目的としている。
既存のアプローチは通常、2つの大きな制限に悩まされる。
論文 参考訳(メタデータ) (2023-01-17T12:42:58Z) - GaitStrip: Gait Recognition via Effective Strip-based Feature
Representations and Multi-Level Framework [34.397404430838286]
本稿では,様々なレベルの歩行情報を抽出するために,GaitStripという名前のストリップベースマルチレベル歩行認識ネットワークを提案する。
具体的には、私たちの高レベルブランチは歩行シーケンスのコンテキストを探求し、低レベルブランチは詳細な姿勢変化に焦点を当てています。
我々のGaitStripは、通常の歩行条件と複雑な歩行条件の両方において最先端の性能を達成する。
論文 参考訳(メタデータ) (2022-03-08T09:49:48Z) - Combining the Silhouette and Skeleton Data for Gait Recognition [13.345465199699]
2つの主要な歩行認識作品は外観ベースとモデルベースであり、シルエットと骨格からそれぞれ特徴を抽出する。
本稿では, シルエットを入力とするCNN系分岐と, 骨格を入力とするGCN系分岐を提案する。
GCNベースの分岐における歩行表現を改善するため、マルチスケールグラフ畳み込みを統合する完全連結グラフ畳み込み演算子を提案する。
論文 参考訳(メタデータ) (2022-02-22T03:21:51Z) - Self-Ensembling GAN for Cross-Domain Semantic Segmentation [107.27377745720243]
本稿では,セマンティックセグメンテーションのためのクロスドメインデータを利用した自己理解型生成逆数ネットワーク(SE-GAN)を提案する。
SE-GANでは、教師ネットワークと学生ネットワークは、意味分節マップを生成するための自己組織化モデルを構成する。
その単純さにもかかわらず、SE-GANは敵の訓練性能を大幅に向上させ、モデルの安定性を高めることができる。
論文 参考訳(メタデータ) (2021-12-15T09:50:25Z) - Edge-assisted Democratized Learning Towards Federated Analytics [67.44078999945722]
本稿では,エッジ支援型民主化学習機構であるEdge-DemLearnの階層的学習構造を示す。
また、Edge-DemLearnを柔軟なモデルトレーニングメカニズムとして検証し、リージョンに分散制御と集約の方法論を構築する。
論文 参考訳(メタデータ) (2020-12-01T11:46:03Z) - Beyond Single Instance Multi-view Unsupervised Representation Learning [21.449132256091662]
ランダムにサンプリングされた2つのインスタンス間の結合類似度を測定することにより、より正確なインスタンス識別能力を付与する。
符号化された特徴が潜伏した空間でより均等に分散される場合,共同学習の類似性によって性能が向上すると考えている。
論文 参考訳(メタデータ) (2020-11-26T15:43:27Z) - MetricUNet: Synergistic Image- and Voxel-Level Learning for Precise CT
Prostate Segmentation via Online Sampling [66.01558025094333]
本稿では,前立腺領域を高速に局在させる第1段階と,前立腺領域を正確に区分する第2段階の2段階のフレームワークを提案する。
マルチタスクネットワークにおけるボクセルワイドサンプリングによる新しいオンラインメトリック学習モジュールを提案する。
本手法は,従来のクロスエントロピー学習法やDice損失学習法と比較して,より代表的なボクセルレベルの特徴を効果的に学習することができる。
論文 参考訳(メタデータ) (2020-05-15T10:37:02Z) - Unpaired Multi-modal Segmentation via Knowledge Distillation [77.39798870702174]
本稿では,不対向画像分割のための新しい学習手法を提案する。
提案手法では,CTおよびMRI間での畳み込みカーネルの共有により,ネットワークパラメータを多用する。
我々は2つの多クラスセグメンテーション問題に対するアプローチを広範囲に検証した。
論文 参考訳(メタデータ) (2020-01-06T20:03:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。