論文の概要: HR-Agent: A Task-Oriented Dialogue (TOD) LLM Agent Tailored for HR Applications
- arxiv url: http://arxiv.org/abs/2410.11239v1
- Date: Tue, 15 Oct 2024 03:51:08 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:04:11.068707
- Title: HR-Agent: A Task-Oriented Dialogue (TOD) LLM Agent Tailored for HR Applications
- Title(参考訳): HR-Agent: HR応用のためのタスク指向対話(TOD)LLMエージェント
- Authors: Weijie Xu, Jay Desai, Fanyou Wu, Josef Valvoda, Srinivasan H. Sengamedu,
- Abstract要約: HR-Agentは、繰り返しHRプロセスの自動化に適した、効率よく、機密性があり、かつ、HR固有のLLMベースのタスク指向対話システムである。
会話データは、推論中にLLMに送信されないため、HR関連のタスクに必要な機密性を保持する。
- 参考スコア(独自算出の注目度): 10.383829270485247
- License:
- Abstract: Recent LLM (Large Language Models) advancements benefit many fields such as education and finance, but HR has hundreds of repetitive processes, such as access requests, medical claim filing and time-off submissions, which are unaddressed. We relate these tasks to the LLM agent, which has addressed tasks such as writing assisting and customer support. We present HR-Agent, an efficient, confidential, and HR-specific LLM-based task-oriented dialogue system tailored for automating repetitive HR processes such as medical claims and access requests. Since conversation data is not sent to an LLM during inference, it preserves confidentiality required in HR-related tasks.
- Abstract(参考訳): 近年のLLM(Large Language Models)の進歩は、教育や金融など多くの分野に寄与しているが、HRには、アクセス要求、医療請求書の提出、タイムオフ申請など、数百の反復的なプロセスがある。
我々は、これらのタスクをLLMエージェントに関連付け、筆記支援やカスタマーサポートといったタスクに対処した。
本稿では,医療クレームやアクセス要求といった反復的なHRプロセスを自動化するために,HR-Agentを提案する。
会話データは、推論中にLLMに送信されないため、HR関連のタスクに必要な機密性を保持する。
関連論文リスト
- Beyond-RAG: Question Identification and Answer Generation in Real-Time Conversations [0.0]
カスタマーコンタクトセンターでは、人間エージェントは長い平均処理時間(AHT)に苦しむことが多い。
本稿では,顧客質問をリアルタイムに識別し,RAGを超越した意思決定を支援するシステムを提案する。
クエリがFAQと一致した場合、システムはFAQデータベースから直接回答を検索する。
論文 参考訳(メタデータ) (2024-10-14T04:06:22Z) - OfficeBench: Benchmarking Language Agents across Multiple Applications for Office Automation [51.27062359412488]
Officeの自動化は、ワークフローでルーチンタスクを自動的に終了することで、人間の生産性を著しく向上させる。
OfficeBenchは、現実的なオフィスにおけるオフィスタスクに対処する現在のLLMエージェントの能力を評価するための、最初のオフィス自動化ベンチマークの1つです。
各タスクにカスタマイズした評価手法を適用すると、GPT-4 Omniは47.00%の最高パス率を達成し、オフィスタスクの処理に優れた性能を示した。
論文 参考訳(メタデータ) (2024-07-26T19:27:17Z) - Hello Again! LLM-powered Personalized Agent for Long-term Dialogue [63.65128176360345]
モデルに依存しない長期対話エージェント(LD-Agent)を導入する。
イベント認識、ペルソナ抽出、応答生成のための3つの独立した調整可能なモジュールが組み込まれている。
LD-Agentの有効性, 汎用性, クロスドメイン性について実験的に検証した。
論文 参考訳(メタデータ) (2024-06-09T21:58:32Z) - LLM-based Multi-Agent Reinforcement Learning: Current and Future Directions [8.55917897789612]
我々は、共通の目標を持つ複数のエージェントの協調作業と、それら間のコミュニケーションに焦点を当てる。
また、フレームワークの言語コンポーネントによって実現されるヒューマン・イン・オン・ザ・ループのシナリオについても検討する。
論文 参考訳(メタデータ) (2024-05-17T22:10:23Z) - HR-MultiWOZ: A Task Oriented Dialogue (TOD) Dataset for HR LLM Agent [6.764665650605542]
10のHRドメインにまたがる550の会話の完全なラベル付きデータセットであるHR-Multiwozを紹介した。
NLP研究のためのHRドメインにおける最初のラベル付きオープンソースの会話データセットである。
データ解析と人的評価とともに、データ生成手順の詳細なレシピを提供する。
論文 参考訳(メタデータ) (2024-02-01T21:10:44Z) - EHRAgent: Code Empowers Large Language Models for Few-shot Complex Tabular Reasoning on Electronic Health Records [47.5632532642591]
大規模言語モデル(LLM)は、計画とツールの利用において例外的な能力を示した。
コードインタフェースを備えたLLMエージェントであるEHRAgentを提案し,マルチタブラル推論のためのコードの自動生成と実行を行う。
論文 参考訳(メタデータ) (2024-01-13T18:09:05Z) - Bootstrapping LLM-based Task-Oriented Dialogue Agents via Self-Talk [11.706292228586332]
大規模言語モデル(LLM)は強力な対話エージェントであるが、特定の機能の実現に特化することは困難である。
本稿では,様々な役割における会話に係わるLLMを通して,より効果的なデータ収集手法を提案する。
このアプローチはLLMの“セルフトーク”を通じてトレーニングデータを生成し,教師付き微調整に利用することができる。
論文 参考訳(メタデータ) (2024-01-10T09:49:10Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z) - Large Language Models are Strong Zero-Shot Retriever [89.16756291653371]
ゼロショットシナリオにおける大規模検索に大規模言語モデル(LLM)を適用するための簡単な手法を提案する。
我々の手法であるRetriever(LameR)は,LLM以外のニューラルモデルに基づいて構築された言語モデルである。
論文 参考訳(メタデータ) (2023-04-27T14:45:55Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。