論文の概要: Contrastive learning of cell state dynamics in response to perturbations
- arxiv url: http://arxiv.org/abs/2410.11281v1
- Date: Tue, 15 Oct 2024 05:01:25 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:01:13.259251
- Title: Contrastive learning of cell state dynamics in response to perturbations
- Title(参考訳): 摂動に応答する細胞状態ダイナミクスのコントラスト学習
- Authors: Soorya Pradeep, Alishba Imran, Ziwen Liu, Taylla Milena Theodoro, Eduardo Hirata-Miyasaki, Ivan Ivanov, Madhura Bhave, Sudip Khadka, Hunter Woosley, Carolina Arias, Shalin B. Mehta,
- Abstract要約: DynaCLRは、タイムラプスデータセットの表現を対照的に学習することで、セルダイナミクスをモデル化するためのフレームワークである。
本研究では,DynaCLRを用いて細胞の形態動態を時間的に規則化された埋め込み空間にマッピングする方法を示す。
- 参考スコア(独自算出の注目度): 0.5665024011188763
- License:
- Abstract: We introduce DynaCLR, a self-supervised framework for modeling cell dynamics via contrastive learning of representations of time-lapse datasets. Live cell imaging of cells and organelles is widely used to analyze cellular responses to perturbations. Human annotation of dynamic cell states captured by time-lapse perturbation datasets is laborious and prone to bias. DynaCLR integrates single-cell tracking with time-aware contrastive learning to map images of cells at neighboring time points to neighboring embeddings. Mapping the morphological dynamics of cells to a temporally regularized embedding space makes the annotation, classification, clustering, or interpretation of the cell states more quantitative and efficient. We illustrate the features and applications of DynaCLR with the following experiments: analyzing the kinetics of viral infection in human cells, detecting transient changes in cell morphology due to cell division, and mapping the dynamics of organelles due to viral infection. Models trained with DynaCLR consistently achieve $>95\%$ accuracy for infection state classification, enable the detection of transient cell states and reliably embed unseen experiments. DynaCLR provides a flexible framework for comparative analysis of cell state dynamics due to perturbations, such as infection, gene knockouts, and drugs. We provide PyTorch-based implementations of the model training and inference pipeline (https://github.com/mehta-lab/viscy) and a user interface (https://github.com/czbiohub-sf/napari-iohub) for the visualization and annotation of trajectories of cells in the real space and the embedding space.
- Abstract(参考訳): タイムラプスデータセットの表現のコントラスト学習を通じてセルダイナミクスをモデリングするための自己教師型フレームワークであるDynaCLRを紹介する。
細胞と小器官のライブ細胞イメージングは、摂動に対する細胞の反応を分析するために広く用いられている。
時間ラプス摂動データセットが捉えた動的細胞状態の人間のアノテーションは熱心であり、バイアスの傾向が強い。
DynaCLRは、単細胞追跡と時間認識のコントラスト学習を統合して、隣の時間点にある細胞のイメージを隣の埋め込みにマッピングする。
細胞の形態力学を時間的に規則化された埋め込み空間にマッピングすることで、細胞状態のアノテーション、分類、クラスタリング、解釈をより定量的かつ効率的にする。
そこで我々は,DynaCLRの特徴と応用について,ヒト細胞におけるウイルス感染の動態解析,細胞分裂による細胞形態の変化の過渡的変化の検出,およびウイルス感染によるオルガネラの動態のマッピングを行った。
DynaCLRでトレーニングされたモデルは、感染状態の分類のための$>95\%の精度を一貫して達成し、一過性の細胞状態の検出を可能にし、目に見えない実験を確実に埋め込みます。
DynaCLRは感染、遺伝子ノックアウト、薬物などの摂動による細胞状態の動態の比較分析のための柔軟なフレームワークを提供する。
我々はPyTorchベースのモデルトレーニングと推論パイプラインの実装(https://github.com/mehta-lab/viscy)とユーザインターフェース(https://github.com/czbiohub-sf/napari-iohub)を提供し、実際の空間と埋め込み空間における細胞の軌道の可視化とアノテーションを提供します。
関連論文リスト
- Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
本研究は,光収差下でのセル画像のセグメンテーションモデルについて,蛍光顕微鏡と光電場顕微鏡を用いて評価する。
ネットワークヘッドの異なるOstoしきい値法やMask R-CNNなどのセグメンテーションモデルをトレーニングし,テストする。
対照的に、Cellpose 2.0は同様の条件下で複雑な細胞画像に有効であることが証明されている。
論文 参考訳(メタデータ) (2024-04-12T15:45:26Z) - The cell signaling structure function [0.16060719742433224]
Live Cell Microscopyは、5-D $(xy,z, channel,time)$の映画を撮影する。
本稿では, 5次元ライブ細胞映画において, 期待パターンの事前知識を必要とせず, トレーニングデータも必要とせず, 細胞シグナル伝達のパターンを見つけるためのアプローチを提案する。
論文 参考訳(メタデータ) (2024-01-04T19:25:00Z) - An Adaptive Framework for Generalizing Network Traffic Prediction
towards Uncertain Environments [51.99765487172328]
我々は,モバイルネットワークトラフィック予測モデルを動的に割り当てるための時系列解析を用いた新しいフレームワークを開発した。
我々のフレームワークは学習した振る舞いを採用しており、現在の研究と比較して50%以上の改善が得られ、どのモデルよりも優れています。
論文 参考訳(メタデータ) (2023-11-30T18:58:38Z) - Mixed Models with Multiple Instance Learning [51.440557223100164]
一般化線形混合モデル(GLMM)とMultiple Instance Learning(MIL)を統合するフレームワークであるMixMILを紹介する。
実験結果から,MixMILは単一セルデータセットにおいて既存のMILモデルより優れていることがわかった。
論文 参考訳(メタデータ) (2023-11-04T16:42:42Z) - RigLSTM: Recurrent Independent Grid LSTM for Generalizable Sequence
Learning [75.61681328968714]
本稿では,対象タスクの基盤となるモジュール構造を利用するために,リカレントな独立したGrid LSTM(RigLSTM)を提案する。
本モデルでは, セル選択, 入力特徴選択, 隠れ状態選択, ソフト状態更新を採用し, より優れた一般化を実現する。
論文 参考訳(メタデータ) (2023-11-03T07:40:06Z) - PhagoStat a scalable and interpretable end to end framework for
efficient quantification of cell phagocytosis in neurodegenerative disease
studies [0.0]
本稿では,食欲活動の定量化と分析を行うためのエンドツーエンド,スケーラブル,汎用的なリアルタイムフレームワークを提案する。
提案するパイプラインでは,大規模なデータセットを処理でき,データ品質検証モジュールも備えている。
我々はこのパイプラインをFTDの微小グリア細胞食細胞解析に応用し,統計的に信頼性の高い結果を得た。
論文 参考訳(メタデータ) (2023-04-26T18:10:35Z) - Growing Isotropic Neural Cellular Automata [63.91346650159648]
我々は、元のGrowing NCAモデルには、学習された更新規則の異方性という重要な制限があると主張している。
細胞系は2つの方法のいずれかによって、正確な非対称パターンを成長させる訓練が可能であることを実証する。
論文 参考訳(メタデータ) (2022-05-03T11:34:22Z) - Topological Data Analysis in Time Series: Temporal Filtration and
Application to Single-Cell Genomics [13.173307471333619]
単細胞トポロジカル単純解析(scTSA)を提案する。
このアプローチを細胞の局所ネットワークから単細胞遺伝子発現プロファイルに適用すると、これまで見つからなかった細胞生態のトポロジーが明らかになる。
38,731細胞,25細胞タイプ,12時間ステップにまたがるゼブラフィッシュ胚発生の単一細胞RNA-seqデータに基づいて,本研究は胃粘膜を最も重要な段階として強調する。
論文 参考訳(メタデータ) (2022-04-29T12:46:14Z) - Towards self-organized control: Using neural cellular automata to
robustly control a cart-pole agent [62.997667081978825]
我々は、カートポールエージェントを制御するために、ニューラルセルオートマトンを使用する。
我々は、Q値の推定値として出力セルの状態を用いる深層学習を用いてモデルを訓練した。
論文 参考訳(メタデータ) (2021-06-29T10:49:42Z) - CellCycleGAN: Spatiotemporal Microscopy Image Synthesis of Cell
Populations using Statistical Shape Models and Conditional GANs [0.07117593004982078]
蛍光標識細胞核の合成2D+t画像データを生成する新しい方法を開発した。
GANコンディショニングの効果を示し、セルセグメンテーションやトラッキングアプローチの訓練に容易に使用できる合成画像のセットを作成する。
論文 参考訳(メタデータ) (2020-10-22T20:02:41Z) - Towards an Automatic Analysis of CHO-K1 Suspension Growth in
Microfluidic Single-cell Cultivation [63.94623495501023]
我々は、人間の力で抽象化されたニューラルネットワークをデータレベルで注入できる新しい機械学習アーキテクチャを提案する。
具体的には、自然データと合成データに基づいて生成モデルを同時に訓練し、細胞数などの対象変数を確実に推定できる共有表現を学習する。
論文 参考訳(メタデータ) (2020-10-20T08:36:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。