論文の概要: A metric embedding kernel for live cell microscopy signaling patterns
- arxiv url: http://arxiv.org/abs/2401.02501v3
- Date: Wed, 13 Nov 2024 20:30:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-15 15:22:52.355657
- Title: A metric embedding kernel for live cell microscopy signaling patterns
- Title(参考訳): 生体細胞顕微鏡信号パターンのためのメートル法埋め込みカーネル
- Authors: Layton Aho, Mark Winter, Marc DeCarlo, Agne Frismantiene, Yannick Blum, Paolo Armando Gagliardi, Olivier Pertz, Andrew R. Cohen,
- Abstract要約: 本稿では,5次元ライブ細胞顕微鏡で捉えた細胞シグナルのパターンを計測するカーネル機能について述べる。
このアプローチでは、ケルモゴロフ複雑性理論を用いて距離と映画を計算し、意味のある情報を測定する。
異なる腫瘍原性変異間のERKおよびAKTシグナル伝達の影響を定量化する。
- 参考スコア(独自算出の注目度): 0.1547863211792184
- License:
- Abstract: Live cell microscopy captures 5-D $(x,y,z,channel,time)$ movies that display patterns of cellular motion and signaling dynamics. We present here a metric kernel function for spatiotemporal patterns of cell signaling dynamics in 5-D live cell microscopy movies unique in requiring no a priori knowledge of expected pattern dynamics, and no training data. The approach uses Kolmogorov complexity theory to compute a metric distance between movies and to measure the meaningful information among subsets of movies. Cell signaling kymographs store at each spatiotemporal cell centroid the cell signaling state, or a functional output such as velocity. Patterns of similarity are identified via the metric normalized compression distance (NCD). The NCD is a reproducing kernel for a Hilbert space that represents the input cell signaling kymographs as points in a low dimensional embedding that optimally captures the pattern similarity identified by the NCD throughout the space. The only parameter is the expected cell radii ($\mu m$). A new formulation of the cluster structure function optimally estimates the meaningful information captured by the embedding. Also presented is the cell signaling structure function (SSF), a Kolmogorov structure function that optimally measures cell signaling state as nuclear intensity w.r.t. surrounding cytoplasm, a significant improvement compared to the current state-of-the-art cytonuclear ratio. Results are presented quantifying the impact of ERK and AKT signaling between different oncogenic mutations, and by the relation between ERK signaling and cellular velocity patterns for movies of 2-D monolayers of human breast epithelial (MCF10A) cells, 3-D MCF10A spheroids under optogenetic manipulation of ERK, and human induced pluripotent stem cells.
- Abstract(参考訳): Live Cell Microscopyは、5-D $(x,y,z, channel,time)$の映画を撮影する。
本稿では, 5次元ライブ細胞顕微鏡映画において, 期待されるパターンダイナミクスの事前知識を必要とせず, トレーニングデータも必要とせず, セルシグナリングダイナミクスの時空間パターンを示す計量カーネル関数について述べる。
このアプローチはコルモゴロフ複雑性理論を用いて、映画間の距離を計算し、映画のサブセット間の有意義な情報を測定する。
細胞シグナリングキモグラフは、各時空間セルセントロイドにセルシグナリング状態または速度などの機能出力を記憶する。
類似性のパターンは、メートル法正規化圧縮距離(NCD)を介して同定される。
NCDは、入力セル信号キモグラフを低次元埋め込みの点として表現し、空間全体を通してNCDによって同定されたパターン類似性を最適にキャプチャするヒルベルト空間の再生カーネルである。
唯一のパラメータは、期待されるセルラジイ(\mu m$)である。
クラスタ構造関数の新しい定式化は、埋め込みによって取得された有意義な情報を最適に推定する。
また、細胞シグナリング構造関数(SSF)は、細胞質を囲む核強度として細胞シグナリング状態を最適に測定するコルモゴロフ構造関数である。
その結果,ヒト乳癌上皮細胞 (MCF10A) の2次元単分子膜, ERKのオプトジェネティック操作下での3次元MCF10A球体, およびヒト誘導多能性幹細胞のERKシグナル伝達と細胞速度パターンとの関係を定量化した。
関連論文リスト
- Contrastive learning of cell state dynamics in response to perturbations [0.5665024011188763]
DynaCLRは、タイムラプスデータセットの表現を対照的に学習することで、セルダイナミクスをモデル化するためのフレームワークである。
本研究では,DynaCLRを用いて細胞の形態動態を時間的に規則化された埋め込み空間にマッピングする方法を示す。
論文 参考訳(メタデータ) (2024-10-15T05:01:25Z) - Interpretable Spatio-Temporal Embedding for Brain Structural-Effective Network with Ordinary Differential Equation [56.34634121544929]
本研究では,まず動的因果モデルを用いて脳効果ネットワークを構築する。
次に、STE-ODE(Spatio-Temporal Embedding ODE)と呼ばれる解釈可能なグラフ学習フレームワークを導入する。
このフレームワークは、構造的および効果的なネットワーク間の動的相互作用を捉えることを目的とした、特異的に設計されたノード埋め込み層を含んでいる。
論文 参考訳(メタデータ) (2024-05-21T20:37:07Z) - Practical Guidelines for Cell Segmentation Models Under Optical Aberrations in Microscopy [14.042884268397058]
本研究は,光収差下でのセル画像のセグメンテーションモデルについて,蛍光顕微鏡と光電場顕微鏡を用いて評価する。
ネットワークヘッドの異なるOstoしきい値法やMask R-CNNなどのセグメンテーションモデルをトレーニングし,テストする。
対照的に、Cellpose 2.0は同様の条件下で複雑な細胞画像に有効であることが証明されている。
論文 参考訳(メタデータ) (2024-04-12T15:45:26Z) - Synthetic location trajectory generation using categorical diffusion
models [50.809683239937584]
拡散モデル(DPM)は急速に進化し、合成データのシミュレーションにおける主要な生成モデルの一つとなっている。
本稿では,個人が訪れた物理的位置を表す変数列である合成個別位置軌跡(ILT)の生成にDPMを用いることを提案する。
論文 参考訳(メタデータ) (2024-02-19T15:57:39Z) - Cell Spatial Analysis in Crohn's Disease: Unveiling Local Cell
Arrangement Pattern with Graph-based Signatures [19.24727395217543]
クローン病(Crohn's disease, CD)は、慢性的に再発する炎症性疾患である。
細胞数や組織形態以外の より広い形態計測と 局所的な配列を理解することは 依然として困難です
我々は,H&E画像から6種類の異なる細胞を特徴付け,各細胞の局所的空間的シグネチャに対する新しいアプローチを開発した。
論文 参考訳(メタデータ) (2023-08-20T05:26:25Z) - Generative modeling of living cells with SO(3)-equivariant implicit
neural representations [2.146287726016005]
ニューラルネットワークによって推定される符号付き距離関数(SDF)のレベルセットとして,生きた細胞形状を表現することを提案する。
我々は、完全に接続されたニューラルネットワークを最適化し、3D+時間領域の任意の時点におけるSDF値の暗黙的な表現を提供する。
本研究では, 急激な変形を示す細胞 (Platynereis dumerilii) , 増殖・分裂する細胞 (C. elegans) , および糸状体突起を成長・分岐する細胞 (A549ヒト肺癌細胞) に対するこのアプローチの有効性を示す。
論文 参考訳(メタデータ) (2023-04-18T12:51:18Z) - 3D Mitochondria Instance Segmentation with Spatio-Temporal Transformers [101.44668514239959]
本稿では,空間的および時間的注意を並列に効率的に計算するハイブリッドエンコーダデコーダフレームワークを提案する。
また,ミトコンドリアインスタンスの領域を背景から支援する訓練中に,意味的クラッタ・バックグラウンドの逆行性障害も導入した。
論文 参考訳(メタデータ) (2023-03-21T17:58:49Z) - Three-dimensional micro-structurally informed in silico myocardium --
towards virtual imaging trials in cardiac diffusion weighted MRI [58.484353709077034]
本稿では,心筋微細構造の数値ファントムを現実的に生成する新しい手法を提案する。
シリコン組織モデルにより、磁気共鳴イメージングの定量的モデルを評価することができる。
論文 参考訳(メタデータ) (2022-08-22T22:01:44Z) - Growing Isotropic Neural Cellular Automata [63.91346650159648]
我々は、元のGrowing NCAモデルには、学習された更新規則の異方性という重要な制限があると主張している。
細胞系は2つの方法のいずれかによって、正確な非対称パターンを成長させる訓練が可能であることを実証する。
論文 参考訳(メタデータ) (2022-05-03T11:34:22Z) - Machine learning based lens-free imaging technique for field-portable
cytometry [0.0]
提案手法の精度は98%に向上し,多くの細胞に対して5dB以上の信号が増強された。
モデルは、数回の学習イテレーションで新しいタイプのサンプルを学ぶために適応し、新しく導入されたサンプルをうまく分類することができる。
論文 参考訳(メタデータ) (2022-03-02T07:09:29Z) - Early Detection of COVID-19 Hotspots Using Spatio-Temporal Data [66.70036251870988]
疾病予防管理センター(CDC)は他の連邦機関と協力して、新型コロナウイルス(COVID-19)の感染が増加する郡(ホットスポット)を特定する。
本稿では,米国における新型コロナウイルスホットスポットの早期発見のためのスパースモデルを提案する。
深層ニューラルネットワークは、カーネルの解釈可能性を維持しながらモデルの代表的なパワーを高めるために導入されている。
論文 参考訳(メタデータ) (2021-05-31T19:28:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。