Backdoor Attack on Vertical Federated Graph Neural Network Learning
- URL: http://arxiv.org/abs/2410.11290v2
- Date: Fri, 24 Jan 2025 14:13:55 GMT
- Title: Backdoor Attack on Vertical Federated Graph Neural Network Learning
- Authors: Jirui Yang, Peng Chen, Zhihui Lu, Ruijun Deng, Qiang Duan, Jianping Zeng,
- Abstract summary: Federated Graph Neural Network (FedGNN) integrate federated learning with graph neural networks (GNNs) to enable privacy-preserving training on distributed graph data.
Vertical Federated Graph Neural Network (VFGNN) handles scenarios where data features and labels are distributed among participants.
Despite the robust privacy-preserving design of VFGNN, we have found that it still faces the risk of backdoor attacks.
This paper proposes BVG, a novel backdoor attack method that leverages multi-hop triggers and backdoor retention.
- Score: 6.540725813096829
- License:
- Abstract: Federated Graph Neural Network (FedGNN) integrate federated learning (FL) with graph neural networks (GNNs) to enable privacy-preserving training on distributed graph data. Vertical Federated Graph Neural Network (VFGNN), a key branch of FedGNN, handles scenarios where data features and labels are distributed among participants. Despite the robust privacy-preserving design of VFGNN, we have found that it still faces the risk of backdoor attacks, even in situations where labels are inaccessible. This paper proposes BVG, a novel backdoor attack method that leverages multi-hop triggers and backdoor retention, requiring only four target-class nodes to execute effective attacks. Experimental results demonstrate that BVG achieves nearly 100% attack success rates across three commonly used datasets and three GNN models, with minimal impact on the main task accuracy. We also evaluated various defense methods, and the BVG method maintained high attack effectiveness even under existing defenses. This finding highlights the need for advanced defense mechanisms to counter sophisticated backdoor attacks in practical VFGNN applications.
Related papers
- MADE: Graph Backdoor Defense with Masked Unlearning [24.97718571096943]
Graph Neural Networks (GNNs) have garnered significant attention from researchers due to their outstanding performance in handling graph-related tasks.
Recent research has demonstrated that GNNs are vulnerable to backdoor attacks, implemented by injecting triggers into the training datasets.
This vulnerability poses significant security risks for applications of GNNs in sensitive domains, such as drug discovery.
arXiv Detail & Related papers (2024-11-26T22:50:53Z) - Graph Transductive Defense: a Two-Stage Defense for Graph Membership Inference Attacks [50.19590901147213]
Graph neural networks (GNNs) have become instrumental in diverse real-world applications, offering powerful graph learning capabilities.
GNNs are vulnerable to adversarial attacks, including membership inference attacks (MIA)
This paper proposes an effective two-stage defense, Graph Transductive Defense (GTD), tailored to graph transductive learning characteristics.
arXiv Detail & Related papers (2024-06-12T06:36:37Z) - Everything Perturbed All at Once: Enabling Differentiable Graph Attacks [61.61327182050706]
Graph neural networks (GNNs) have been shown to be vulnerable to adversarial attacks.
We propose a novel attack method called Differentiable Graph Attack (DGA) to efficiently generate effective attacks.
Compared to the state-of-the-art, DGA achieves nearly equivalent attack performance with 6 times less training time and 11 times smaller GPU memory footprint.
arXiv Detail & Related papers (2023-08-29T20:14:42Z) - Transferable Graph Backdoor Attack [13.110473828583725]
Graph Neural Networks (GNNs) have achieved tremendous success in many graph mining tasks.
GNNs are found to be vulnerable to unnoticeable perturbations on both graph structure and node features.
In this paper, we disclose the TRAP attack, a Transferable GRAPh backdoor attack.
arXiv Detail & Related papers (2022-06-21T06:25:37Z) - More is Better (Mostly): On the Backdoor Attacks in Federated Graph Neural Networks [25.372833814088178]
Graph Neural Networks (GNNs) are a class of deep learning-based methods for processing graph domain information.
This paper conducts two types of backdoor attacks in Federated GNNs: centralized backdoor attacks (CBA) and distributed backdoor attacks (DBA)
We find that both attacks are robust against the investigated defense, necessitating the need to consider backdoor attacks in Federated GNNs as a novel threat.
arXiv Detail & Related papers (2022-02-07T14:09:39Z) - Robustness of Graph Neural Networks at Scale [63.45769413975601]
We study how to attack and defend Graph Neural Networks (GNNs) at scale.
We propose two sparsity-aware first-order optimization attacks that maintain an efficient representation.
We show that common surrogate losses are not well-suited for global attacks on GNNs.
arXiv Detail & Related papers (2021-10-26T21:31:17Z) - Explainability-based Backdoor Attacks Against Graph Neural Networks [9.179577599489559]
There are numerous works on backdoor attacks on neural networks, but only a few works consider graph neural networks (GNNs)
We apply two powerful GNN explainability approaches to select the optimal trigger injecting position to achieve two attacker objectives -- high attack success rate and low clean accuracy drop.
Our empirical results on benchmark datasets and state-of-the-art neural network models demonstrate the proposed method's effectiveness.
arXiv Detail & Related papers (2021-04-08T10:43:40Z) - Graph Backdoor [53.70971502299977]
We present GTA, the first backdoor attack on graph neural networks (GNNs)
GTA departs in significant ways: it defines triggers as specific subgraphs, including both topological structures and descriptive features.
It can be instantiated for both transductive (e.g., node classification) and inductive (e.g., graph classification) tasks.
arXiv Detail & Related papers (2020-06-21T19:45:30Z) - Backdoor Attacks to Graph Neural Networks [73.56867080030091]
We propose the first backdoor attack to graph neural networks (GNN)
In our backdoor attack, a GNN predicts an attacker-chosen target label for a testing graph once a predefined subgraph is injected to the testing graph.
Our empirical results show that our backdoor attacks are effective with a small impact on a GNN's prediction accuracy for clean testing graphs.
arXiv Detail & Related papers (2020-06-19T14:51:01Z) - GNNGuard: Defending Graph Neural Networks against Adversarial Attacks [16.941548115261433]
We develop GNNGuard, an algorithm to defend against a variety of training-time attacks that perturb the discrete graph structure.
GNNGuard learns how to best assign higher weights to edges connecting similar nodes while pruning edges between unrelated nodes.
Experiments show that GNNGuard outperforms existing defense approaches by 15.3% on average.
arXiv Detail & Related papers (2020-06-15T06:07:46Z) - Graph Structure Learning for Robust Graph Neural Networks [63.04935468644495]
Graph Neural Networks (GNNs) are powerful tools in representation learning for graphs.
Recent studies show that GNNs are vulnerable to carefully-crafted perturbations, called adversarial attacks.
We propose a general framework Pro-GNN, which can jointly learn a structural graph and a robust graph neural network model.
arXiv Detail & Related papers (2020-05-20T17:07:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.