論文の概要: A model learning framework for inferring the dynamics of transmission rate depending on exogenous variables for epidemic forecasts
- arxiv url: http://arxiv.org/abs/2410.11545v1
- Date: Tue, 15 Oct 2024 12:24:55 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:00:20.869527
- Title: A model learning framework for inferring the dynamics of transmission rate depending on exogenous variables for epidemic forecasts
- Title(参考訳): 流行予測のための外因性変数に依存する伝達速度のダイナミクスを推定するためのモデル学習フレームワーク
- Authors: Giovanni Ziarelli, Stefano Pagani, Nicola Parolini, Francesco Regazzoni, Marco Verani,
- Abstract要約: 我々は,透過率の隠れたダイナミクスを再構築するために,新しい科学機械学習フレームワークを定式化した。
本手法は,2010年から2020年までのイタリアにおける気象データ(温度・湿度)とインフルエンザデータに基づいて,合成テストケースと現実テストケースの両方を用いて検証した。
- 参考スコア(独自算出の注目度): 3.3385430106181184
- License:
- Abstract: In this work, we aim to formalize a novel scientific machine learning framework to reconstruct the hidden dynamics of the transmission rate, whose inaccurate extrapolation can significantly impair the quality of the epidemic forecasts, by incorporating the influence of exogenous variables (such as environmental conditions and strain-specific characteristics). We propose an hybrid model that blends a data-driven layer with a physics-based one. The data-driven layer is based on a neural ordinary differential equation that learns the dynamics of the transmission rate, conditioned on the meteorological data and wave-specific latent parameters. The physics-based layer, instead, consists of a standard SEIR compartmental model, wherein the transmission rate represents an input. The learning strategy follows an end-to-end approach: the loss function quantifies the mismatch between the actual numbers of infections and its numerical prediction obtained from the SEIR model incorporating as an input the transmission rate predicted by the neural ordinary differential equation. We validate this original approach using both a synthetic test case and a realistic test case based on meteorological data (temperature and humidity) and influenza data from Italy between 2010 and 2020. In both scenarios, we achieve low generalization error on the test set and observe strong alignment between the reconstructed model and established findings on the influence of meteorological factors on epidemic spread. Finally, we implement a data assimilation strategy to adapt the neural equation to the specific characteristics of an epidemic wave under investigation, and we conduct sensitivity tests on the network hyperparameters.
- Abstract(参考訳): 本研究では,不正確な外挿が感染予測の質を著しく損なう可能性があるトランスミッションレートの隠れたダイナミクスを,外因性変数(環境条件やひずみ特性など)の影響を取り入れた新しい科学的機械学習フレームワークを定式化することを目的とする。
本稿では,データ駆動層と物理モデルを組み合わせたハイブリッドモデルを提案する。
データ駆動層は、気象データと波動固有の潜伏パラメータに基づいて、送信速度のダイナミクスを学習する神経常微分方程式に基づいている。
物理ベースの層は標準のSEIR区画モデルで構成されており、送信レートは入力を表す。
損失関数は、実際の感染数と、神経常微分方程式によって予測される伝達率を入力として組み込んだSEIRモデルから得られた数値予測とのミスマッチを定量化する。
本手法は,2010年から2020年までのイタリアにおける気象データ(温度・湿度)とインフルエンザデータに基づいて,合成テストケースと現実テストケースの両方を用いて検証した。
両シナリオとも, テストセット上での一般化誤差が低く, 再構成モデルとの強い整合性を観察し, 流行拡大に及ぼす気象要因の影響を確定した。
最後に、調査中の流行波の特定の特性にニューラル方程式を適用するためのデータ同化戦略を実装し、ネットワークハイパーパラメータに対して感度試験を行う。
関連論文リスト
- A novel approach for predicting epidemiological forecasting parameters
based on real-time signals and Data Assimilation [3.4901787251083163]
我々は、様々なデータソースと融合手法を用いて、畳み込みニューラルネットワーク(CNN)モデルのアンサンブルを実装し、ロバストな予測を構築する。
気象信号とソーシャルメディアを用いた人口密度マップを組み合わせることで、ロンドンにおける新型コロナウイルスの流行予測の性能と柔軟性が向上した。
論文 参考訳(メタデータ) (2023-07-03T17:05:29Z) - Approaching epidemiological dynamics of COVID-19 with physics-informed
neural networks [23.95944607153291]
SIRモデルに埋め込まれた物理インフォームドニューラルネットワーク(PINN)は、感染症の時間的進化のダイナミクスを理解するために考案された。
この手法はドイツで報告された新型コロナウイルス(COVID-19)のデータに適用され、ウイルスの拡散傾向を正確に把握し予測できることが示されている。
論文 参考訳(メタデータ) (2023-02-17T10:36:58Z) - SPADE4: Sparsity and Delay Embedding based Forecasting of Epidemics [2.578242050187029]
流行予測のためのSPADE4(Sprsity and Delay Embedding based Forecasting)を提案する。
本手法は,シミュレーションデータと実データの両方に適用した場合,コンパートメンタルモデルよりも優れていることを示す。
論文 参考訳(メタデータ) (2022-11-11T23:39:48Z) - Asymptotic-Preserving Neural Networks for multiscale hyperbolic models
of epidemic spread [0.0]
多くの状況において、感染症の空間的伝播は、多スケールのPDEによって管理される異なるスケールの個体の動きによって特徴づけられる。
複数のスケールが存在する場合、PINNの直接適用は一般的に、ニューラルネットワークの損失関数における微分モデルのマルチスケールの性質のため、結果の低下につながる。
本稿では,パンデミック拡散のマルチスケール多代謝輸送モデルのための新しいAPニューラルネットワーク(APNN)について考察する。
論文 参考訳(メタデータ) (2022-06-25T11:25:47Z) - Mixed Effects Neural ODE: A Variational Approximation for Analyzing the
Dynamics of Panel Data [50.23363975709122]
パネルデータ解析に(固定・ランダムな)混合効果を取り入れたME-NODEという確率モデルを提案する。
我々は、Wong-Zakai定理によって提供されるSDEの滑らかな近似を用いて、我々のモデルを導出できることを示す。
次に、ME-NODEのためのエビデンスに基づく下界を導出し、(効率的な)トレーニングアルゴリズムを開発する。
論文 参考訳(メタデータ) (2022-02-18T22:41:51Z) - Influence Estimation and Maximization via Neural Mean-Field Dynamics [60.91291234832546]
本稿では,ニューラル平均場(NMF)ダイナミクスを用いた新しい学習フレームワークを提案する。
我々のフレームワークは拡散ネットワークの構造とノード感染確率の進化を同時に学習することができる。
論文 参考訳(メタデータ) (2021-06-03T00:02:05Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - STELAR: Spatio-temporal Tensor Factorization with Latent Epidemiological
Regularization [76.57716281104938]
我々は,多くの地域の流行傾向を同時に予測するテンソル法を開発した。
stelarは離散時間差分方程式のシステムを通じて潜在時間正規化を組み込むことで長期予測を可能にする。
我々は、カウンティレベルと州レベルのCOVID-19データの両方を用いて実験を行い、このモデルが流行の興味深い潜伏パターンを識別できることを示します。
論文 参考訳(メタデータ) (2020-12-08T21:21:47Z) - An Optimal Control Approach to Learning in SIDARTHE Epidemic model [67.22168759751541]
本研究では,疫病データから動的コンパートメンタルモデルの時間変化パラメータを学習するための一般的な手法を提案する。
我々はイタリアとフランスの疫病の進化を予報する。
論文 参考訳(メタデータ) (2020-10-28T10:58:59Z) - OutbreakFlow: Model-based Bayesian inference of disease outbreak
dynamics with invertible neural networks and its application to the COVID-19
pandemics in Germany [0.19791587637442667]
専門的なニューラルネットワークを用いた疫学モデリングの新たな組み合わせを提案する。
我々は, 発生時間, 未検出感染数, 症状発症前の感染可能性, および, 非常に適度な量の実世界の観測による遅延の報告など, 重要な疾患特性に関する信頼性の高い確率推定値を得ることができる。
論文 参考訳(メタデータ) (2020-10-01T11:01:49Z) - Network Diffusions via Neural Mean-Field Dynamics [52.091487866968286]
本稿では,ネットワーク上の拡散の推論と推定のための新しい学習フレームワークを提案する。
本研究の枠組みは, ノード感染確率の正確な進化を得るために, モリ・ズワンジッヒ形式から導かれる。
我々のアプローチは、基礎となる拡散ネットワークモデルのバリエーションに対して多用途で堅牢である。
論文 参考訳(メタデータ) (2020-06-16T18:45:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。