M2NO: Multiresolution Operator Learning with Multiwavelet-based Algebraic Multigrid Method
- URL: http://arxiv.org/abs/2406.04822v2
- Date: Tue, 29 Oct 2024 01:38:08 GMT
- Title: M2NO: Multiresolution Operator Learning with Multiwavelet-based Algebraic Multigrid Method
- Authors: Zhihao Li, Zhilu Lai, Xiaobo Zhang, Wei Wang,
- Abstract summary: We introduce the Multiwavelet-based Algebraic Multigrid Neural Operator (M2NO), a novel deep learning framework.
By exploiting the inherent similarities between these two approaches, M2NO enhances precision and flexibility across various PDE benchmarks.
M2NO excels in handling high-resolution and super-resolution tasks, consistently outperforming competing models.
- Score: 13.93532934867225
- License:
- Abstract: Solving partial differential equations (PDEs) effectively necessitates a multi-scale approach, particularly critical in high-dimensional scenarios characterized by increasing grid points or resolution. Traditional methods often fail to capture the detailed features necessary for accurate modeling, presenting a significant challenge in scientific computing. In response, we introduce the Multiwavelet-based Algebraic Multigrid Neural Operator (M2NO), a novel deep learning framework that synergistically combines multiwavelet transformations and algebraic multigrid (AMG) techniques. By exploiting the inherent similarities between these two approaches, M2NO overcomes their individual limitations and enhances precision and flexibility across various PDE benchmarks. Employing Multiresolution Analysis (MRA) with high-pass and low-pass filters, the model executes hierarchical decomposition to accurately delineate both global trends and localized details within PDE solutions, supporting adaptive data representation at multiple scales. M2NO also automates node selection and adeptly manages complex boundary conditions through its multiwavelet-based operators. Extensive evaluations on a diverse array of PDE datasets with different boundary conditions confirm M2NO's superior performance. Furthermore, M2NO excels in handling high-resolution and super-resolution tasks, consistently outperforming competing models and demonstrating robust adaptability in complex computational scenarios.
Related papers
- M$^{2}$M: Learning controllable Multi of experts and multi-scale operators are the Partial Differential Equations need [43.534771810528305]
This paper introduces a framework of multi-scale and multi-expert (M$2$M) neural operators to simulate and learn PDEs efficiently.
We employ a divide-and-conquer strategy to train a multi-expert gated network for the dynamic router policy.
Our method incorporates a controllable prior gating mechanism that determines the selection rights of experts, enhancing the model's efficiency.
arXiv Detail & Related papers (2024-10-01T15:42:09Z) - GSIFN: A Graph-Structured and Interlaced-Masked Multimodal Transformer-based Fusion Network for Multimodal Sentiment Analysis [0.0]
Multimodal Sentiment Analysis (MSA) leverages multiple data modals to analyze human sentiment.
Existing MSA models generally employ cutting-edge multimodal fusion and representation learning-based methods to promote MSA capability.
Our proposed GSIFN incorporates two main components to solve these problems: (i) a graph-structured and interlaced-masked multimodal Transformer.
It adopts the Interlaced Mask mechanism to construct robust multimodal graph embedding, achieve all-modal-in-one Transformer-based fusion, and greatly reduce the computational overhead.
arXiv Detail & Related papers (2024-08-27T06:44:28Z) - Towards Efficient Pareto Set Approximation via Mixture of Experts Based Model Fusion [53.33473557562837]
Solving multi-objective optimization problems for large deep neural networks is a challenging task due to the complexity of the loss landscape and the expensive computational cost.
We propose a practical and scalable approach to solve this problem via mixture of experts (MoE) based model fusion.
By ensembling the weights of specialized single-task models, the MoE module can effectively capture the trade-offs between multiple objectives.
arXiv Detail & Related papers (2024-06-14T07:16:18Z) - Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
Sequential Decision Making under Uncertainty (SDMU) is ubiquitous in many domains such as energy, finance, and supply chains.
Some SDMU are naturally modeled as Multistage Problems (MSPs) but the resulting optimizations are notoriously challenging from a computational standpoint.
This paper introduces a novel approach Two-Stage General Decision Rules (TS-GDR) to generalize the policy space beyond linear functions.
The effectiveness of TS-GDR is demonstrated through an instantiation using Deep Recurrent Neural Networks named Two-Stage Deep Decision Rules (TS-LDR)
arXiv Detail & Related papers (2024-05-23T18:19:47Z) - Intuition-aware Mixture-of-Rank-1-Experts for Parameter Efficient Finetuning [50.73666458313015]
Large Language Models (LLMs) have demonstrated significant potential in performing multiple tasks in multimedia applications.
MoE has been emerged as a promising solution with its sparse architecture for effective task decoupling.
Intuition-MoR1E achieves superior efficiency and 2.15% overall accuracy improvement across 14 public datasets.
arXiv Detail & Related papers (2024-04-13T12:14:58Z) - Solving High-Dimensional PDEs with Latent Spectral Models [74.1011309005488]
We present Latent Spectral Models (LSM) toward an efficient and precise solver for high-dimensional PDEs.
Inspired by classical spectral methods in numerical analysis, we design a neural spectral block to solve PDEs in the latent space.
LSM achieves consistent state-of-the-art and yields a relative gain of 11.5% averaged on seven benchmarks.
arXiv Detail & Related papers (2023-01-30T04:58:40Z) - Solving Coupled Differential Equation Groups Using PINO-CDE [42.363646159367946]
PINO-CDE is a deep learning framework for solving coupled differential equation groups (CDEs)
Based on the theory of physics-informed neural operator (PINO), PINO-CDE uses a single network for all quantities in a CDEs.
This framework integrates engineering dynamics and deep learning technologies and may reveal a new concept for CDEs solving and uncertainty propagation.
arXiv Detail & Related papers (2022-10-01T08:39:24Z) - Neural Stochastic Dual Dynamic Programming [99.80617899593526]
We introduce a trainable neural model that learns to map problem instances to a piece-wise linear value function.
$nu$-SDDP can significantly reduce problem solving cost without sacrificing solution quality.
arXiv Detail & Related papers (2021-12-01T22:55:23Z) - Efficient Model-Based Multi-Agent Mean-Field Reinforcement Learning [89.31889875864599]
We propose an efficient model-based reinforcement learning algorithm for learning in multi-agent systems.
Our main theoretical contributions are the first general regret bounds for model-based reinforcement learning for MFC.
We provide a practical parametrization of the core optimization problem.
arXiv Detail & Related papers (2021-07-08T18:01:02Z) - A Bayesian Multiscale Deep Learning Framework for Flows in Random Media [0.0]
Fine-scale simulation of complex systems governed by multiscale partial differential equations (PDEs) is computationally expensive and various multiscale methods have been developed for addressing such problems.
In this work, we introduce a novel hybrid deep-learning and multiscale approach for multiscale PDEs with limited training data.
For demonstration purposes, we focus on a porous media flow problem. We use an image-to-image supervised deep learning model to learn the mapping between the input permeability field and the multiscale basis functions.
arXiv Detail & Related papers (2021-03-08T23:11:46Z) - Multi-Domain Learning by Meta-Learning: Taking Optimal Steps in
Multi-Domain Loss Landscapes by Inner-Loop Learning [5.490618192331097]
We consider a model-agnostic solution to the problem of Multi-Domain Learning for multi-modal applications.
Our method is model-agnostic, requiring no additional model parameters and no network architecture changes.
We demonstrate our solution to a fitting problem in medical imaging, specifically, in the automatic segmentation of white matter hyperintensity.
arXiv Detail & Related papers (2021-02-25T19:54:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.