論文の概要: Regional Ocean Forecasting with Hierarchical Graph Neural Networks
- arxiv url: http://arxiv.org/abs/2410.11807v1
- Date: Tue, 15 Oct 2024 17:34:50 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 14:00:37.027398
- Title: Regional Ocean Forecasting with Hierarchical Graph Neural Networks
- Title(参考訳): 階層型グラフニューラルネットワークによる地域海洋予測
- Authors: Daniel Holmberg, Emanuela Clementi, Teemu Roos,
- Abstract要約: 我々は、高解像度の中距離海洋予測用に設計されたニューラルネットワークであるSeaCastを紹介する。
SeaCastはグラフベースのフレームワークを使用して、海洋グリッドの複雑な幾何学を処理し、地域の海洋環境に合わせて外部の強制データを統合する。
コペルニクス海洋局が提供した地中海の運用数値モデルを用いて,高空間分解能実験により本手法の有効性を検証した。
- 参考スコア(独自算出の注目度): 1.4146420810689422
- License:
- Abstract: Accurate ocean forecasting systems are vital for understanding marine dynamics, which play a crucial role in environmental management and climate adaptation strategies. Traditional numerical solvers, while effective, are computationally expensive and time-consuming. Recent advancements in machine learning have revolutionized weather forecasting, offering fast and energy-efficient alternatives. Building on these advancements, we introduce SeaCast, a neural network designed for high-resolution, medium-range ocean forecasting. SeaCast employs a graph-based framework to effectively handle the complex geometry of ocean grids and integrates external forcing data tailored to the regional ocean context. Our approach is validated through experiments at a high spatial resolution using the operational numerical model of the Mediterranean Sea provided by the Copernicus Marine Service, along with both numerical and data-driven atmospheric forcings.
- Abstract(参考訳): 正確な海洋予報システムは海洋力学を理解するのに不可欠であり、環境管理や気候適応戦略において重要な役割を担っている。
従来の数値解法は有効ではあるが、計算に高価で時間を要する。
機械学習の最近の進歩は天気予報に革命をもたらし、高速でエネルギー効率の良い代替手段を提供している。
これらの進歩に基づいて、我々は高解像度の中距離海洋予測用に設計されたニューラルネットワークであるSeaCastを紹介した。
SeaCastはグラフベースのフレームワークを使用して、海洋グリッドの複雑な幾何学を効果的に処理し、地域の海洋環境に合わせて外部の強制データを統合する。
提案手法は,コペルニクス海洋局が提供した地中海の運用数値モデルと,数値およびデータ駆動型大気強制力を用いて,高空間分解能実験により検証した。
関連論文リスト
- Advancing Towards a Marine Digital Twin Platform: Modeling the Mar Menor Coastal Lagoon Ecosystem in the South Western Mediterranean [39.58165317223655]
沿岸の海洋生態系は、人為的活動や気候変動からの圧力が増している。
本稿では,マルメナール沿岸ラグーン生態系のモデル化を目的としたマリンデジタルツインプラットフォームの開発を開拓する。
論文 参考訳(メタデータ) (2024-09-16T10:01:18Z) - Efficient Localized Adaptation of Neural Weather Forecasting: A Case Study in the MENA Region [62.09891513612252]
地域レベルのダウンストリームタスクに特化して、リミテッド・エリア・モデリングに焦点を合わせ、モデルをトレーニングします。
我々は,気象予報が水資源の管理,農業,極度の気象事象の影響軽減に重要であるという,気象学的課題からMENA地域を考察する。
本研究では,パラメータ効率のよい微調整手法,特にローランド適応(LoRA)とその変種を統合することの有効性を検証することを目的とした。
論文 参考訳(メタデータ) (2024-09-11T19:31:56Z) - Coupled Ocean-Atmosphere Dynamics in a Machine Learning Earth System Model [0.6008008212472723]
我々は,高分解能(0.25deg)人工知能/機械学習(AI/ML)結合土系モデルであるオーシャンリンク大気(Ola)モデルを提案する。
その結果,Olaは適切な位相速度を持つ熱帯海洋波を含む海洋-大気結合力学の学習特性を示すことがわかった。
本研究では,地球物理流体力学研究所のSPEARモデルと比較し,エルニーニョ/南方振動(ENSO)の予測能力を示す。
論文 参考訳(メタデータ) (2024-06-12T20:29:14Z) - Deep Vision-Based Framework for Coastal Flood Prediction Under Climate Change Impacts and Shoreline Adaptations [0.3413711585591077]
低データ環境下での高忠実度ディープビジョンに基づく沿岸洪水予測モデルを訓練するための体系的枠組みを提案する。
また,沿岸の洪水予測問題に特化して,CNNの深部構造を導入している。
開発したDLモデルの性能は、一般に採用されている測地回帰法に対して検証される。
論文 参考訳(メタデータ) (2024-06-06T19:54:34Z) - SFANet: Spatial-Frequency Attention Network for Weather Forecasting [54.470205739015434]
天気予報は様々な分野において重要な役割を担い、意思決定とリスク管理を推進している。
伝統的な手法は、しばしば気象系の複雑な力学を捉えるのに苦労する。
本稿では,これらの課題に対処し,天気予報の精度を高めるための新しい枠組みを提案する。
論文 参考訳(メタデータ) (2024-05-29T08:00:15Z) - OceanNet: A principled neural operator-based digital twin for regional oceans [0.0]
本研究は、海洋循環のための原理的ニューラルオペレーターベースのデジタルツインであるOceanNetを紹介する。
オーシャンネットは北西大西洋西部境界流(ガルフストリーム)に適用される
論文 参考訳(メタデータ) (2023-10-01T23:06:17Z) - Data-Driven Short-Term Daily Operational Sea Ice Regional Forecasting [52.77986479871782]
地球温暖化は北極を海洋活動に利用し、信頼性の高い海氷予測の需要を生み出した。
本研究では,海氷予測のためのU-Netモデルの性能を,今後10日間にわたって検証した。
この深層学習モデルは、気象データの追加と複数の地域での訓練により、単純なベースラインをかなりの差で上回り、その品質を向上させることができることを示す。
論文 参考訳(メタデータ) (2022-10-17T09:14:35Z) - Learning-based estimation of in-situ wind speed from underwater
acoustics [58.293528982012255]
水中音響から風速時系列を検索するための深層学習手法を提案する。
我々のアプローチは、事前の物理知識と計算効率の両面から恩恵を受けるために、データ同化と学習ベースのフレームワークをブリッジする。
論文 参考訳(メタデータ) (2022-08-18T15:27:40Z) - Modeling Oceanic Variables with Dynamic Graph Neural Networks [0.09830751917335563]
ブラジルのサントス・サンテ・ビセンテ・ベルティオガ地域における環境変数を予測するためのデータ駆動手法について述べる。
我々のモデルは、最先端のシーケンスモデルとリレーショナルモデルとを結合することにより、時間的および空間的帰納バイアスの両方を利用する。
実験の結果、柔軟性とドメイン知識の依存性のほとんどを維持しながら、私たちのモデルによってより良い結果が得られます。
論文 参考訳(メタデータ) (2022-06-25T22:43:02Z) - Forecasting large-scale circulation regimes using deformable
convolutional neural networks and global spatiotemporal climate data [86.1450118623908]
変形可能な畳み込みニューラルネットワーク(deCNN)に基づく教師あり機械学習手法の検討
今後1~15日にわたって北大西洋-欧州の気象条件を予測した。
より広い視野で見れば、通常の畳み込みニューラルネットワークよりも5~6日を超えるリードタイムでかなり優れた性能を発揮することが分かる。
論文 参考訳(メタデータ) (2022-02-10T11:37:00Z) - SALT: Sea lice Adaptive Lattice Tracking -- An Unsupervised Approach to
Generate an Improved Ocean Model [72.3183990520267]
シーライス分散と分布を効率的に推定するためのシーライス適応格子追跡手法を提案する。
具体的には、局所的な海洋特性に基づいて、オーシャンモデルの格子グラフにノードをマージすることで、適応的な空間メッシュを生成する。
提案手法は, 変動する気候下での海洋ライス寄生圧マップの予測モデルにより, 積極的養殖管理の促進を約束するものである。
論文 参考訳(メタデータ) (2021-06-24T17:29:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。