論文の概要: Learned Neural Physics Simulation for Articulated 3D Human Pose Reconstruction
- arxiv url: http://arxiv.org/abs/2410.12023v1
- Date: Tue, 15 Oct 2024 19:42:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:44:40.405085
- Title: Learned Neural Physics Simulation for Articulated 3D Human Pose Reconstruction
- Title(参考訳): 人工的な3次元姿勢復元のためのニューラルネットワークシミュレーションの学習
- Authors: Mykhaylo Andriluka, Baruch Tabanpour, C. Daniel Freeman, Cristian Sminchisescu,
- Abstract要約: 本稿では,接触を伴う人間の関節運動の力学をモデル化するための新しいニューラルネットワーク手法であるLARPを提案する。
私たちのニューラルアーキテクチャは、従来の物理シミュレータで一般的に見られる機能をサポートします。
LARPの価値を実証するために、既存のビデオベース再構成フレームワークにおける古典的非微分可能シミュレータの状態のドロップイン代替として使用します。
- 参考スコア(独自算出の注目度): 30.51621591645056
- License:
- Abstract: We propose a novel neural network approach, LARP (Learned Articulated Rigid body Physics), to model the dynamics of articulated human motion with contact. Our goal is to develop a faster and more convenient methodological alternative to traditional physics simulators for use in computer vision tasks such as human motion reconstruction from video. To that end we introduce a training procedure and model components that support the construction of a recurrent neural architecture to accurately simulate articulated rigid body dynamics. Our neural architecture supports features typically found in traditional physics simulators, such as modeling of joint motors, variable dimensions of body parts, contact between body parts and objects, and is an order of magnitude faster than traditional systems when multiple simulations are run in parallel. To demonstrate the value of LARP we use it as a drop-in replacement for a state of the art classical non-differentiable simulator in an existing video-based reconstruction framework and show comparative or better 3D human pose reconstruction accuracy.
- Abstract(参考訳): 本研究では,接触による関節運動のダイナミクスをモデル化するために,新しいニューラルネットワーク手法であるLARPを提案する。
我々のゴールは、ビデオからの人間の動き再構成などのコンピュータビジョンタスクに使用する従来の物理シミュレーターに代わる、より高速で便利な手法を開発することである。
そこで我々は, 剛体力学を正確にシミュレートするために, リカレントニューラルネットワークの構築を支援する訓練手順とモデルコンポーネントを導入する。
私たちのニューラルアーキテクチャは、ジョイントモーターのモデリング、ボディ部分の可変次元、ボディ部分とオブジェクト間の接触など、従来の物理シミュレータで一般的に見られる機能をサポートし、複数のシミュレーションが並列に実行される場合、従来のシステムよりも桁違いに高速です。
LARPの価値を実証するために、既存のビデオベース再構築フレームワークにおける最先端の古典的非微分可能シミュレータのドロップイン代替として使用し、比較またはより良い3次元ポーズ復元精度を示す。
関連論文リスト
- Neural Material Adaptor for Visual Grounding of Intrinsic Dynamics [48.99021224773799]
本稿では,既存の物理法則を学習的補正と統合するニューラルネットワーク (NeuMA) を提案する。
また,粒子駆動型3次元ガウス平滑化モデルであるParticle-GSを提案する。
論文 参考訳(メタデータ) (2024-10-10T17:43:36Z) - PhyRecon: Physically Plausible Neural Scene Reconstruction [81.73129450090684]
PHYRECONは、微分可能なレンダリングと微分可能な物理シミュレーションの両方を利用して暗黙的な表面表現を学習する最初のアプローチである。
この設計の中心は、SDFに基づく暗黙の表現と明示的な表面点の間の効率的な変換である。
また,物理シミュレータの安定性も向上し,全データセットに対して少なくとも40%の改善が得られた。
論文 参考訳(メタデータ) (2024-04-25T15:06:58Z) - A Physics-embedded Deep Learning Framework for Cloth Simulation [6.8806198396336935]
本稿では,布地シミュレーションの物理特性を直接エンコードする物理組込み学習フレームワークを提案する。
このフレームワークは、従来のシミュレータやサブニューラルネットワークを通じて、外部の力や衝突処理と統合することもできる。
論文 参考訳(メタデータ) (2024-03-19T15:21:00Z) - NeuPhysics: Editable Neural Geometry and Physics from Monocular Videos [82.74918564737591]
本稿では,モノクラーRGBビデオ入力のみから動的シーンの3次元形状と物理パラメータを学習する手法を提案する。
実験により,提案手法は,競合するニューラルフィールドアプローチと比較して,動的シーンのメッシュとビデオの再構成に優れることを示した。
論文 参考訳(メタデータ) (2022-10-22T04:57:55Z) - Skeleton2Humanoid: Animating Simulated Characters for
Physically-plausible Motion In-betweening [59.88594294676711]
現代の深層学習に基づく運動合成アプローチは、合成された運動の物理的妥当性をほとんど考慮していない。
テスト時に物理指向の動作補正を行うシステムSkeleton2Humanoid'を提案する。
挑戦的なLaFAN1データセットの実験は、物理的妥当性と精度の両方の観点から、我々のシステムが先行手法を著しく上回っていることを示している。
論文 参考訳(メタデータ) (2022-10-09T16:15:34Z) - Trajectory Optimization for Physics-Based Reconstruction of 3d Human
Pose from Monocular Video [31.96672354594643]
本研究は,単眼映像から身体的に可視な人間の動きを推定する作業に焦点をあてる。
物理を考慮しない既存のアプローチは、しばしば運動人工物と時間的に矛盾した出力を生み出す。
提案手法は,Human3.6Mベンチマークにおける既存の物理法と競合する結果が得られることを示す。
論文 参考訳(メタデータ) (2022-05-24T18:02:49Z) - Differentiable Dynamics for Articulated 3d Human Motion Reconstruction [29.683633237503116]
DiffPhyは、映像から3次元の人間の動きを再現する物理モデルである。
モノクロ映像から物理的に可視な3次元動作を正確に再現できることを実証し,本モデルの有効性を検証した。
論文 参考訳(メタデータ) (2022-05-24T17:58:37Z) - Inferring Articulated Rigid Body Dynamics from RGBD Video [18.154013621342266]
我々は,逆レンダリングと微分可能なシミュレーションを組み合わせるパイプラインを導入し,実世界の調音機構のディジタルツインを作成する。
本手法はロボットが操作する関節機構のキネマティックツリーを正確に再構築する。
論文 参考訳(メタデータ) (2022-03-20T08:19:02Z) - H4D: Human 4D Modeling by Learning Neural Compositional Representation [75.34798886466311]
この研究は、動的人間に対するコンパクトで構成的な表現を効果的に学習できる新しい枠組みを提示する。
単純で効果的な線形運動モデルを提案し, 粗く規則化された動き推定を行う。
本手法は, 高精度な動作と詳細な形状を持つ動的ヒトの回復に有効であるだけでなく, 様々な4次元人間関連タスクにも有効であることを示す。
論文 参考訳(メタデータ) (2022-03-02T17:10:49Z) - Learning Local Recurrent Models for Human Mesh Recovery [50.85467243778406]
本稿では,人間のメッシュを標準的な骨格モデルに従って複数の局所的に分割するビデオメッシュ復元手法を提案する。
次に、各局所部分の力学を別個のリカレントモデルでモデル化し、各モデルは、人体の既知の運動構造に基づいて適切に条件付けする。
これにより、構造的インフォームドな局所的再帰学習アーキテクチャが実現され、アノテーションを使ってエンドツーエンドでトレーニングすることができる。
論文 参考訳(メタデータ) (2021-07-27T14:30:33Z) - Kinematics-Guided Reinforcement Learning for Object-Aware 3D Ego-Pose
Estimation [25.03715978502528]
本研究では,物体の相互作用と人体動態を3次元エゴ位置推定のタスクに組み込む手法を提案する。
我々は人体の運動モデルを用いて、人間の運動の全範囲を表現し、身体の力学モデルを用いて、物理学シミュレータ内の物体と相互作用する。
これは、エゴセントリックなビデオからオブジェクトと物理的に有効な3Dフルボディインタラクションシーケンスを推定する最初の試みである。
論文 参考訳(メタデータ) (2020-11-10T00:06:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。