論文の概要: HumanEval-V: Evaluating Visual Understanding and Reasoning Abilities of Large Multimodal Models Through Coding Tasks
- arxiv url: http://arxiv.org/abs/2410.12381v1
- Date: Wed, 16 Oct 2024 09:04:57 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-17 13:43:57.602978
- Title: HumanEval-V: Evaluating Visual Understanding and Reasoning Abilities of Large Multimodal Models Through Coding Tasks
- Title(参考訳): HumanEval-V: 符号化タスクによる大規模マルチモーダルモデルの視覚的理解と推論能力の評価
- Authors: Fengji Zhang, Linquan Wu, Huiyu Bai, Guancheng Lin, Xiao Li, Xiao Yu, Yue Wang, Bei Chen, Jacky Keung,
- Abstract要約: HumanEval-Vは、コード生成による大規模言語モデルの視覚的理解と推論能力を評価するために設計されたベンチマークである。
HumanEval-Vには、CodeForcesやStack Overflowといったプラットフォームから派生した、108の慎重に構築されたエントリーレベルのPythonコーディングタスクが含まれている。
我々はHumanEval-Vを用いて19の最先端LMMを評価し、重要な課題を明らかにした。
- 参考スコア(独自算出の注目度): 25.959032350818795
- License:
- Abstract: Coding tasks have been valuable for evaluating Large Language Models (LLMs), as they demand the comprehension of high-level instructions, complex reasoning, and the implementation of functional programs -- core capabilities for advancing Artificial General Intelligence. Despite the progress in Large Multimodal Models (LMMs), which extend LLMs with visual perception and understanding capabilities, there remains a notable lack of coding benchmarks that rigorously assess these models, particularly in tasks that emphasize visual reasoning. To address this gap, we introduce HumanEval-V, a novel and lightweight benchmark specifically designed to evaluate LMMs' visual understanding and reasoning capabilities through code generation. HumanEval-V includes 108 carefully crafted, entry-level Python coding tasks derived from platforms like CodeForces and Stack Overflow. Each task is adapted by modifying the context and algorithmic patterns of the original problems, with visual elements redrawn to ensure distinction from the source, preventing potential data leakage. LMMs are required to complete the code solution based on the provided visual context and a predefined Python function signature outlining the task requirements. Every task is equipped with meticulously handcrafted test cases to ensure a thorough and reliable evaluation of model-generated solutions. We evaluate 19 state-of-the-art LMMs using HumanEval-V, uncovering significant challenges. Proprietary models like GPT-4o achieve only 13% pass@1 and 36.4% pass@10, while open-weight models with 70B parameters score below 4% pass@1. Ablation studies further reveal the limitations of current LMMs in vision reasoning and coding capabilities. These results underscore key areas for future research to enhance LMMs' capabilities. We have open-sourced our code and benchmark at https://github.com/HumanEval-V/HumanEval-V-Benchmark.
- Abstract(参考訳): コーディングタスクは、高レベルの命令の理解、複雑な推論、そして関数型プログラムの実装を必要とするため、Large Language Models (LLM)を評価するのに有用である。
LLMを視覚的知覚と理解能力で拡張するLMM(Large Multimodal Models)の進歩にもかかわらず、これらのモデルを厳格に評価するコーディングベンチマークは、特に視覚的推論を強調するタスクにおいて、依然として顕著に欠落している。
このギャップに対処するために、コード生成によるLMMの視覚的理解と推論能力を評価するために設計された、新しくて軽量なベンチマークであるHumanEval-Vを紹介する。
HumanEval-Vには、CodeForcesやStack Overflowといったプラットフォームから派生した、108の慎重に構築されたエントリーレベルのPythonコーディングタスクが含まれている。
各タスクは、元の問題のコンテキストとアルゴリズムパターンを変更し、視覚要素がソースと区別されることを保証し、潜在的なデータ漏洩を防ぐことで適応される。
LMMは、提供されるビジュアルコンテキストと、タスク要求の概要を概説したPython関数シグネチャに基づいて、コードソリューションを完成させる必要がある。
すべてのタスクは、モデル生成ソリューションの徹底的で信頼性の高い評価を保証するために、巧妙に手作りのテストケースを備えている。
我々はHumanEval-Vを用いて19の最先端LMMを評価し、重要な課題を明らかにした。
GPT-4oのようなプロプライエタリモデルは13%のpass@1と36.4%のpass@10しか達成していない。
アブレーション研究は、視覚推論と符号化能力における現在のLMMの限界をさらに明らかにしている。
これらの結果は,LMMの能力向上に向けた今後の研究の鍵となる部分である。
コードとベンチマークはhttps://github.com/HumanEval-V/HumanEval-V-Benchmarkで公開しています。
関連論文リスト
- FVEval: Understanding Language Model Capabilities in Formal Verification of Digital Hardware [4.480157114854711]
FVEvalは,形式的検証(FV)に関わるタスクにおいて,大規模言語モデル(LLM)のパフォーマンスを特徴付ける最初の総合ベンチマークである。
ベンチマークは3つのサブタスクで構成され、異なるレベルでLLM能力を測定する。
本稿では,FVに整合した合成例を生成するための,専門家による検証手法と手法のコレクションについて述べる。
論文 参考訳(メタデータ) (2024-10-15T21:48:57Z) - MMIE: Massive Multimodal Interleaved Comprehension Benchmark for Large Vision-Language Models [71.36392373876505]
我々は、LVLM(Large Vision-Language Models)において、インターリーブされたマルチモーダル理解と生成を評価するための大規模ベンチマークであるMMIEを紹介する。
MMIEは、数学、コーディング、物理学、文学、健康、芸術を含む3つのカテゴリ、12のフィールド、102のサブフィールドにまたがる20Kの厳密にキュレートされたマルチモーダルクエリで構成されている。
インターリーブされたインプットとアウトプットの両方をサポートし、多様な能力を評価するために、複数選択とオープンな質問フォーマットの混合を提供する。
論文 参考訳(メタデータ) (2024-10-14T04:15:00Z) - Intriguing Properties of Large Language and Vision Models [18.449076451976236]
大規模言語とビジョンモデル(LLVM)は、その顕著な一般化性能のために、大きな注目と開発努力を受けている。
高度な推論タスクの達成にもかかわらず、基本的な知覚関連タスクのパフォーマンスは驚くほど低いままである。
LLVMの最も一般的なファミリー(LLaVA)を10評価ベンチマークで評価することで、この問題を調査する。
論文 参考訳(メタデータ) (2024-10-07T05:07:01Z) - SIaM: Self-Improving Code-Assisted Mathematical Reasoning of Large Language Models [54.78329741186446]
本稿では,コードに基づく批判モデルを用いて,質問コードデータ構築,品質管理,補完的評価などのステップをガイドする新しいパラダイムを提案する。
英語と中国語におけるドメイン内ベンチマークとドメイン外ベンチマークの両方の実験は、提案したパラダイムの有効性を実証している。
論文 参考訳(メタデータ) (2024-08-28T06:33:03Z) - VisualAgentBench: Towards Large Multimodal Models as Visual Foundation Agents [50.12414817737912]
大規模マルチモーダルモデル(LMM)は、人工知能の新たな時代を迎え、言語と視覚の融合によって、高い能力を持つVisual Foundation Agentを形成する。
既存のベンチマークでは、複雑な実世界の環境でのLMMの可能性を十分に証明できない。
VisualAgentBench (VAB) は、視覚基礎エージェントとしてLMMを訓練し評価するための先駆的なベンチマークである。
論文 参考訳(メタデータ) (2024-08-12T17:44:17Z) - RAVEN: Multitask Retrieval Augmented Vision-Language Learning [5.1583788731239455]
世界中の知識をエンコードする大規模言語モデルのスケーリングは持続不可能であり、リソースバリアが悪化している。
Retrieval-Augmented Generation (RAG) は潜在的な解決策を示すが、その視覚言語モデル(VLM)への応用は検討中である。
本稿では,効率的なタスク特化微調整により,ベースVLMを強化した検索拡張VLMフレームワークであるRAVENを紹介する。
論文 参考訳(メタデータ) (2024-06-27T13:08:35Z) - Lumen: Unleashing Versatile Vision-Centric Capabilities of Large Multimodal Models [87.47400128150032]
本稿では,多目的視覚中心機能拡張を備えた大規模マルチモーダルモデルであるLumenという新しいLMMアーキテクチャを提案する。
ルーメンはまず、きめ細かい視覚言語の概念のアライメントを促進する。
そして、共有表現を軽量なタスクデコーダに柔軟にルーティングすることで、タスク固有のデコーダを実行する。
論文 参考訳(メタデータ) (2024-03-12T04:13:45Z) - SEED-Bench-2: Benchmarking Multimodal Large Language Models [67.28089415198338]
MLLM(Multimodal large language model)は、最近、テキストだけでなく、インターリーブされたマルチモーダル入力の画像を生成できることを実証した。
SEED-Bench-2は、正確な人間のアノテーションを持つ24Kの多重選択質問で構成されており、27次元にまたがっている。
我々は,23個の著名なオープンソースMLLMの性能を評価し,貴重な観察結果を要約した。
論文 参考訳(メタデータ) (2023-11-28T05:53:55Z) - MM-Vet: Evaluating Large Multimodal Models for Integrated Capabilities [159.9847317300497]
複雑なマルチモーダルタスクにおける大規模マルチモーダルモデル(LMM)を評価する評価ベンチマークであるMM-Vetを提案する。
近年のLMMは、黒板に書かれた数学の問題を解くこと、ニュース画像の出来事や有名人を推論すること、視覚的ジョークを説明することなど、様々な興味深い能力を示している。
論文 参考訳(メタデータ) (2023-08-04T17:59:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。